23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isocoumarins incorporating chalcone moieties act as isoform selective tumor-associated carbonic anhydrase inhibitors

, , , ORCID Icon & ORCID Icon
Received 04 Feb 2024, Accepted 09 Apr 2024, Published online: 28 May 2024

References

  • Barry RD. Isocoumarins, developments since 1950. Chem Rev. 1964;64(3):229–260. doi:10.1021/cr60229a002
  • Hussain M, Hussain MT, Rama NH, et al. Synthesis and antimicrobial activities of some isocoumarin and dihydroisocoumarin derivatives. Nat Prod Res. 2003;17(3):207–214. doi:10.1080/1057563021000040826
  • Pal S, Chatare V, Pal M. Isocoumarin and its derivatives: an overview on their synthesis and applications. Current Org Chem. 2011;15(5):782–800. doi:10.2174/138527211794518970
  • Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem. 2020;35(1):1462–1470. doi:10.1080/14756366.2020.1788009
  • Abid OR, Khalid M, Hussain MT, et al. Synthesis and anti-cancer, anti-metastatic evaluation of some new fluorinated isocoumarins and 3,4-dihydroisocoumarins. J Fluorine Chem. 2012;135:240–245. doi:10.1016/j.jfluchem.2011.11.011
  • Yadav P, Purohit NV. Synthesis and antibacterial action of some new isocoumarin derivatives. Der Pharma Chem. 2011;3(3):189–199.
  • Rajeshirke M, Shah R, Yadavb P, et al. Synthesis and antioxidant activity of Metal(II) complexes of isocoumarin derivatives. Der Pharmacia Sinica. 2012;3(2):239–248.
  • Koppula P, Purohit N. Synthesis of new biologically active triazolo, tetrazolo and coumarinoyl derivatives of isocoumarins. Org Commun. 2013;6(4):148–161.
  • Onyılmaz M, Koca M, Bonardi A, et al. Isocoumarins: a new class of selective carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):743–748. doi:10.1080/14756366.2022.2041630
  • Guida A, Lhouty MH, Tichit D, et al. Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Appl Catal A: General. 1997;164(1–2):251–264. doi:10.1016/S0926-860X(97)00175-0
  • Zhuang C, Zhang W, Sheng C, et al. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117(12):7762–7810. doi:10.1021/acs.chemrev.7b00020
  • Srivastava YK. Ecofriendly microwave assisted synthesis of some chalcones. Rasayan J Chem. 2008;1(4):884–886.
  • Fukui K, Matsumoto T, Nakamura S, et al. Synthetic studies of the flavone derivatives. VII. The synthesis of jaceidin. BCSJ. 1968;41(6):1413–1417. doi:10.1246/bcsj.41.1413
  • Zangade S, Mokle S, Vibhute A, et al. An efficient and operationally simple synthesis of some new chalcones by using grinding technique. Chem Sci J. 2011;2(1):1–6. doi:10.4172/2150-3494.1000011
  • Elkanzi NAA, Hrichi H, Alolayan RA, et al. Synthesis of chalcones derivatives and their biological activities: a review. ACS Omega. 2022;7(32):27769–27786. doi:10.1021/acsomega.2c01779
  • Michalkova R, Mirossay L, Kello M, et al. Anticancer potential of natural chalcones: in vitro and in vivo evidence. IJMS. 2023;24(12):10354. doi:10.3390/ijms241210354
  • Bandeira PN, Lemos TLG, Santos HS, et al. Synthesis, structural characterization, and cytotoxic evaluation of chalcone derivatives. Med Chem Res. 2019;28(11):2037–2049. doi:10.1007/s00044-019-02434-1
  • Emam SH, Sonousi A, Osman EO, et al. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem. 2021;107:104630. doi:10.1016/j.bioorg.2021.104630
  • Al-Anazi M, Al-Najjar B, Khairuddean M. Structure-based drug design studies toward the discovery of novel chalcone derivatives as potential epidermal growth factor receptor (EGFR). Inhib Mol. 2018;23(12):3203. doi:10.3390/molecules23123203
  • Bonvicini F, Gentilomi G, Bressan F, et al. Functionalization of the chalcone scaffold for the discovery of novel lead compounds targeting fungal infections. Molecules. 2019;24(2):372. doi:10.3390/molecules24020372
  • Patel J, Dholariya H, Patel K, et al. Cu(II) and Ni(II) complexes of coumarin derivatives with fourth generation flouroquinolone: synthesis, characterization, microbicidal and antioxidant assay. Med Chem Res. 2014;23(8):3714–3724. doi:10.1007/s00044-014-0943-y
  • Kurt BZ, Kandas NO, Dag A, et al. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab J Chem. 2020;13(1):1120–1129. doi:10.1016/j.arabjc.2017.10.001
  • Aboukhatwa SM, Sidhom PA, Angeli A, et al. Terminators or guardians? design, synthesis, and cytotoxicity profiling of chalcone-sulfonamide hybrids. ACS Omega. 2023;8(8):7666–7683. doi:10.1021/acsomega.2c07285
  • Tawfik HO, Shaldam MA, Nocentini A, et al. Novel 3-(6-methylpyridin-2-yl)coumarin-based chalcones as selective inhibitors of cancer-related carbonic anhydrases IX and XII endowed with anti-proliferative activity. J Enzyme Inhib Med Chem. 2022;37(1):1043–1052. doi:10.1080/14756366.2022.2056734
  • Xiao J, Sun Z, Kong F, et al. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur J Med Chem. 2020;185:111791. doi:10.1016/j.ejmech.2019.111791
  • Yildirim M, Poyraz S, Ersatir M. Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res. 2023;32(4):617–642. doi:10.1007/s00044-023-03025-x
  • Wang Y, Zhang W, Dong J, et al. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg Chem. 2020;95:103530. doi:10.1016/j.bioorg.2019.103530
  • Zhang L, Xu Z. Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem. 2019;181:111587. doi:10.1016/j.ejmech.2019.111587
  • Feng D, Zhang A, Yang Y, et al. Coumarin-containing hybrids and their antibacterial activities. Archiv der Pharmazie. 2020;353(6):1900380. doi:10.1002/ardp.201900380
  • Wang YH, Jiang SC, Chen Y, et al. Synthesis and antibacterial activity of novel chalcone derivatives bearing a coumarin moiety. Chem Pap. 2019;73(10):2493–2500. doi:10.1007/s11696-019-00802-0
  • Patel K, Karthikeyan C, Hari Narayana Moorthy NS, et al. Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents. Med Chem Res. 2012;21(8):1780–1784. doi:10.1007/s00044-011-9694-1
  • Pingaew R, Saekee A, Mandi P, et al. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur J Med Chem. 2014;85:65–76. doi:10.1016/j.ejmech.2014.07.087
  • Xi G-L, Liu Z-Q. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron. 2014;70(44):8397–8404. doi:10.1016/j.tet.2014.08.063
  • Musatat AB, Kılıçcıoğlu İ, Kurman Y, et al. Antimicrobial, antiproliferative effects and docking studies of methoxy group enriched coumarin-chalcone hybrids. Chem Biodivers. 2023;20(3):e202200973. doi:10.1002/cbdv.202200973
  • Konidala SK, Kotra V, Danduga RCSR, Kola PK, et al. Coumarin-chalcone hybrids targeting insulin receptor: design, synthesis, anti-diabetic activity, and molecular docking. Bioorg Chem. 2020;104:104207. doi:10.1016/j.bioorg.2020.104207
  • Moya-Alvarado G, Yañez O, Morales N, et al. Coumarin-chalcone hybrids as inhibitors of mao-b: biological activity and in silico studies. Molecules. 2021;26(9):2430. doi:10.3390/molecules26092430
  • Zhu Z, Feng X, Wang H, et al. Design, synthesis and biological activity of coumarin-chalcone hybrid derivatives as phosphodiesterase type II (PDE2) inhibitors. Tetrahedron. 2023;149:133733. doi:10.1016/j.tet.2023.133733
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi:10.1038/nrd2467
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond). 2021;135(10):1233–1249. doi:10.1042/CS20210040
  • Supuran CT. Carbonic anhydrase versatility: from pH regulation to CO2 sensing and metabolism. Front Mol Biosci. 2023;10:1326633. doi:10.3389/fmolb.2023.1326633
  • Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem. 2021;36(1):1702–1714. doi:10.1080/14756366.2021.1945049
  • Koca M, Ertürk AS, Umaz A. Microwave-assisted intermolecular aldol condensation: efficient one-step synthesis of 3-acetyl isocoumarin and optimization of different reaction conditions. Arab J Chem. 2018;11(4):538–545. doi:10.1016/j.arabjc.2015.11.013
  • Reddy GM, Garcia JR, Yuvaraja G, et al. Design, synthesis of tri-substituted pyrazole derivatives as promising antimicrobial agents and investigation of structure activity relationships. J Heteroc Chem. 2020;57:2288–2296. doi:10.1002/jhet.3952
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. J Biol Chem. 1971;246(8):2561–2573. doi:10.1016/S0021-9258(18)62326-9
  • Bonardi A, Bua S, Combs J, et al. The three-tails approach as a new strategy to improve selectivity of action of sulphonamide inhibitors against tumour-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem. 2022;37(1):930–939. doi:10.1080/14756366.2022.2053526
  • Elsayed ZM, Almahli H, Nocentini A, et al. Development of novel anilinoquinazoline-based carboxylic acids as non-classical carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):2191163. doi:10.1080/14756366.2023.2191163
  • Bonardi A, Nocentini A, Bua S, et al. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: improving ligand/isoform matching and selectivity of action. J Med Chem. 2020;63(13):7422–7444. doi:10.1021/acs.jmedchem.0c00733
  • Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc. 2009;131(8):3057–3062. doi:10.1021/ja809683v
  • Supuran CT. Novel carbonic anhydrase inhibitors. Future Med Chem. 2021;13(22):1935–1937. doi:10.4155/fmc-2021-0222
  • McDonald PC, Chafe SC, Supuran CT, et al. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase ix: from bench to bedside. Cancers (Basel). 2022;14(14):3297. doi:10.3390/cancers14143297

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.