27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural investigations and antibacterial, antifungal and anticancer studies on zinc salicylaldimine complexes

ORCID Icon, , , &
Received 24 Feb 2024, Accepted 23 May 2024, Published online: 20 Jun 2024

References

  • Tidwell TT. Hugo (Ugo) Schiff, Schiff bases, and a century of beta-lactam synthesis. Angew Chem Int Ed. 2008;47:1016–1020. doi:10.1002/anie.200702965
  • Krishnamoorthy P, Sathyadevi P, Muthiah PT, et al. Nickel and cobalt complexes of benzoic acid (2-hydroxy-benzylidene)-hydrazide ligand: synthesis, structure and comparative in vitro evaluations of biological perspectives. RSC Adv. 2012;2:12190–12203. doi:10.1039/c2ra20597a
  • Yang W, Liu H, Du D. Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(ii) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction. Org Biomol Chem. 2010;8:2956–2960. doi:10.1039/b923835b
  • Sano T, Nishio Y, Hamada Y, et al. Design of conjugated molecular materials for optoelectronics. J Mater Chem. 2000;10:157–161. doi:10.1039/a903239h
  • Lee SA, You GR, Choi YW, et al. A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN- in aqueous media: an application to bioimaging. Dalton Trans. 2014;43:6650–6659. doi:10.1039/C4DT00361F
  • Nayar CR, Ravikumar R. Review: second order nonlinearities of Schiff bases derived from salicylaldehyde and their metal complexes. J Coord Chem. 2014;67:1–16. doi:10.1080/00958972.2013.864759
  • Li S, Chen S, Lei S, et al. Investigation on some Schiff bases as HCl corrosion inhibitors for copper. Corros Sci. 1999;41:1273–1287. doi:10.1016/S0010-938X(98)00183-8
  • Al Zoubi W, Al Mohanna N. Membrane sensors based on Schiff bases as chelating ionophores-a review. Spectrochim Acta A: Mol Biomol Spectrosc. 2014;132:854–870. doi:10.1016/j.saa.2014.04.176
  • Jeevadason AW, Murugavel KK, Neelakantan MA. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew Sustain Energy Rev. 2014;36:220–227. doi:10.1016/j.rser.2014.04.060
  • Sakurai H, Yoshikawa Y, Yasui H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem Soc Rev. 2008;37:2383–2392. doi:10.1039/b710347f
  • Panneerselvam P, Nair RR, Vijayalakshmi G, et al. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur J Med Chem. 2005;40:225–229. doi:10.1016/j.ejmech.2004.09.003
  • Ren S, Wang R, Komatsu K, et al. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem. 2002;45:410–419. doi:10.1021/jm010252q
  • Mendu P, Kumari CG, Ragi R. Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff base ligand and its metal complexes. J Fluoresc. 2015;25:369–378. doi:10.1007/s10895-015-1520-6
  • Naskar B, Modak R, Sikdar J, et al. A simple Schiff base molecular logic gate for detection of Zn2+ in water and its bio-imaging application in plant system. J Photochem Photobiol Chem. 2016;321:99–109. doi:10.1016/j.jphotochem.2016.01.022
  • Garnovski AD, Vasilchenko IS. Rational design of metal coordination compounds with azomethine ligands. Russ Chem Rev. 2002;71:943–968. doi:10.1070/RC2002v071n11ABEH000759
  • Hothi HS, Makkar A, Sharma JR, et al. Synthesis and antifungal potential of Co(II) complexes of 1-(2′-hydroxyphenyl)ethylideneanilines. Eur J Med Chem. 2006;41:253–255. doi:10.1016/j.ejmech.2005.07.016
  • Das P, Linert W. Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord Chem Rev. 2016;311:1–23. doi:10.1016/j.ccr.2015.11.010
  • Opstal T, Verpoort F. Synthesis of highly active ruthenium indenylidene complexes for atom-transfer radical polymerization and ring-opening-metathesis polymerization. Angew Chem Int Ed. 2003;42:2876–2879. doi:10.1002/anie.200250840
  • Yoon TP, Jacobsen EN. Privileged chiral catalysts. Science. 2003;299:1691–1693. doi:10.1126/science.1083622
  • El-Bindary AA, El-Sonbati AZ, Diab MA, et al. Polymeric complexes - LXII. Coordination chemistry of supramolecular Schiff base polymer complexes - A review. J Mol Liq. 2016;2016:318–329. doi:10.1016/j.molliq.2015.12.113
  • Zhang J, Xu L, Wong W-Y. Energy materials based on metal Schiff base complexes. Coord Chem Rev. 2018;355:180–198. doi:10.1016/j.ccr.2017.08.007
  • Tantaru G, Dorneanu V, Stan M. Schiff bis bases: Analytical reagents. II. Spectrophotometric determination of manganese from pharmaceutical forms. J Pharm Biomed Anal. 2022;27:827–832. doi:10.1016/S0731-7085(01)00517-9
  • Nejati K, Rezvani Z, Massoumi B. Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes. Dyes Pigm. 2007;75:653–657. doi:10.1016/j.dyepig.2006.07.019
  • Sreedaran S, Bharathi KS, Kalilur-Rahiman A, et al. Synthesis, electrochemical, catalytic and antimicrobial activities of novel unsymmetrical macrocyclic dicompartmental binuclear nickel(II) complexes. Polyhedron. 2008;27:1867–1874. doi:10.1016/j.poly.2008.02.022
  • Li Z, Yan H, Chang G, et al. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: synthesis, characterization, cytotoxicity, protein and DNA–binding properties. J Photochem Photobiol B. 2016;163:403–412. doi:10.1016/j.jphotobiol.2016.09.005
  • Dhara K, Roy P, Ratha J, et al. Synthesis, crystal structure, magnetic property and DNA cleavage activity of a new terephthalate-bridged tetranuclear copper(II) complex. Polyhedron. 2007;26:4509–4517. doi:10.1016/j.poly.2007.06.009
  • Mondal S, Chakraborty M, Mondal A, et al. Cu(II) complexes of a tridentate N,N,O-donor Schiff base of pyridoxal: Synthesis, X-ray structures, DNA-binding properties and catecholase activity. New J Chem. 2048;42:9588–9597. doi:10.1039/C8NJ00418H
  • Baumeister JE, Reinig KM, Barnes CL, et al. Technetium and rhenium Schiff base compounds for nuclear medicine: syntheses of rhenium analogues to 99mTc-furifosmin. Inorg Chem. 2018;57:12920–12933. doi:10.1021/acs.inorgchem.8b02156
  • Golbedaghi R, Fausto R. Coordination aspects in Schiff bases cocrystals. Polyhedron. 2018;155:1–12. doi:10.1016/j.poly.2018.06.049
  • Chowdhury T, Bera K, Samanta D. Unveiling the binding interaction of zinc (II) complexes of homologous Schiff-base ligands on the surface of BSA protein: a combined experimental and theoretical approach. Appl Organomet Chem. 2020;34:e5556. doi:10.1002/aoc.5556
  • Mondal SS, Jaiswal N, Bera PS, et al. Cu(II) and Co(II/III) complexes of N,O-chelated Schiff base ligands: DNA interaction, protein binding, cytotoxicity, cell death mechanism and reactive oxygen species generation studies. Appl Organomet Chem. 2011;35:e6026. doi:10.1002/aoc.6026
  • Adsule S, Barve V, Chen D, et al. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J Med Chem. 2006;49:7242–7246. doi:10.1021/jm060712l
  • Ibrahim ABM, Mahmoud GA-E. Chemical- vs sonochemical-assisted synthesis of ZnO nanoparticles from a new zinc complex for improvement of carotene biosynthesis from Rhodotorula toruloides MH023518. Appl Organomet Chem. 2021;35:e6086. doi:10.1002/aoc.6086
  • Ibrahim ABM, Mahmoud GA-E, Meurer F, et al. Preparation and crystallographic studies of a new mercuric salicylaldimine complex for fabrication of microscaled and nanoscaled mercuric sulfide as antimicrobial agents against human pathogenic yeasts and filamentous fungi. Appl Organomet Chem. 2021;35:e6134. doi:10.1002/aoc.6134
  • Kasumov VT, Köksal F. Synthesis, ESR, UV–Visible and reactivity studies of new bis(N-dimethoxyaniline-3,5-tBu2-salicylaldiminato)copper(II) complexes. Spectrochim Acta A: Mol Biomol Spectrosc. 2012;98:207–214. doi:10.1016/j.saa.2012.07.122
  • Kasumov VT, Koksal F, Sezer A. Synthesis, spectroscopic and redox properties of a novel series of copper(II) complexes of N-alkyl-3,5-tBu2-salicylaldimines. Generation of the directly coordinated Cu(II)–phenoxyl radical complexes. Polyhedron. 2005;24:1203–1211. doi:10.1016/j.poly.2005.04.003
  • Venkataramanan NS, Kuppuraj G, Rajagopal S. Metal-salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds-synthetic and mechanistic aspects. Coord Chem Rev. 2005;249:1249–1268. doi:10.1016/j.ccr.2005.01.023
  • Katsuki T. Unique asymmetric catalysis of cis-β metal complexes of salen and its related Schiff-base ligands. Chem Soc Rev. 2004;33:437–444. doi:10.1039/b304133f
  • Yiang X, Jones RA. Anion dependent self-assembly of “Tetra-Decker” and “Triple-Decker” luminescent Tb(III) salen complexes. J Am Chem Soc. 2005;127:686–7687. doi:10.1021/ja051292c
  • Campell NH, Abd Karim NH, Parkinson GN, et al. Molecular basis of structure–activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J Med Chem. 2012;55:209–222. doi:10.1021/jm201140v
  • Prabhakar M, Zacharias PS, Das SK. Self-assembly of a fluorescent chiral zinc(II) complex that leads to supramolecular helices. Inorg Chem. 2005;44:2585–2587. doi:10.1021/ic048236h
  • Teixeira MFS, Dockal ER, Cavalheiro ETG. Sensor for cysteine based on oxovanadium(IV) complex of salen modified carbon paste electrode. Sens Actuat B: Chem. 2005;106:619–625. doi:10.1016/j.snb.2004.07.031
  • Adhikari S, Bhattacharjee T, Butcher RJ, et al. Synthesis and characterization of mixed-ligand Zn(II) and Cu(II) complexes including polyamines and dicyanodithiolate(2-): in vitro cytotoxic activity of Cu(II) compounds. Inorganica Chim Acta. 2019;498:119098. doi:10.1016/j.ica.2019.119098
  • Qian J, Wang L, Gu W, et al. Efficient double-strand cleavage of DNA mediated by Zn(ii)-based artificial nucleases. Dalton Trans. 2011;40:5617–5624. doi:10.1039/c0dt01659d
  • Boseggia E, Gatos M, Lucatello L, et al. Toward efficient Zn(II)-based artificial nucleases. J Am Chem Soc. 2004;126(14):4543–4549. doi:10.1021/ja039465q
  • Bhattacharyya S, Sarkar A, Dey SK, et al. Effect of glucosamine conjugation to zinc(II) complexes of a bis-pyrazole ligand: syntheses, characterization and anticancer activity. J Inorg Biochem. 2014;140:131–142. doi:10.1016/j.jinorgbio.2014.07.009
  • Prasad AS, Beck FWJ, Snell DC, et al. Zinc in cancer prevention. Nutr Cancer 2009;61:879–887. doi:10.1080/01635580903285122
  • Beraldo H, Gambino D. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini-Rev Med Chem. 2004;4:31–39. doi:10.2174/1389557043487484
  • Zhang SQ, Yu XF, Zhang HB, et al. Comparison of the oral absorption, distribution, excretion, and bioavailability of zinc sulfate, zinc gluconate, and zinc-enriched yeast in rats. Mol Nutr Food Res. 2018;62:e170098. doi:10.1002/mnfr.201700981
  • Rider SA, Davies SJ, Jha AN, et al. Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J Anim Physiol Anim Nutr. 2010;94:99–110. doi:10.1111/j.1439-0396.2008.00888.x
  • Haase LH, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6:1175–1180. doi:10.1039/c3mt00353a
  • Kolenko V, Teper E, Kutikov A, et al. Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol. 2013;10:219–226. doi:10.1038/nrurol.2013.43
  • Emami S, Hosseinimehr SJ, Taghdisi SM, et al. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett. 2007;17:45–48. doi:10.1016/j.bmcl.2006.09.097
  • Nakayama A, Hiromura M, Adachi Y, et al. Molecular mechanism of antidiabetic zinc-allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem. 2008;13:675–684. doi:10.1007/s00775-008-0352-0
  • Tarushi A, Lafazanis K, Kljun J, et al. First- and second-generation quinolone antibacterial drugs interacting with zinc(II): structure and biological perspectives. J Inorg Biochem. 2013;121:53–65. doi:10.1016/j.jinorgbio.2012.12.009
  • Zhou Q, Hambley TW, Kennedy BJ, et al. Syntheses and characterization of anti-inflammatory dinuclear and mononuclear zinc indomethacin complexes. Crystal structures of [Zn2(indomethacin)4(L)2] (L = N,N-dimethylacetamide, pyridine, 1-methyl-2-pyrrolidinone) and [Zn(indomethacin)2(L1)2] (L1 = ethanol, methanol). Inorg Chem. 2000;39:3742–3748. doi:10.1021/ic991477i
  • Tarushi A, Totta X, Papadopoulos A, et al. Antioxidant activity and interaction with DNA and albumins of zinc–tolfenamato complexes. Crystal structure of [Zn(tolfenamato)2(2, 2′-dipyridylketoneoxime)2]. Eur J Med Chem. 2014;74:187–198. doi:10.1016/j.ejmech.2013.12.019
  • Trávníček Z, Kryštof V, Šipl M. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity. J Inorg Biochem. 2006;100:214–225. doi:10.1016/j.jinorgbio.2005.07.006
  • Di Vaira M, Bazzicalupi C, Orioli P, et al. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem. 2014;43:3795–3797. doi:10.1021/ic0494051
  • Ali MM, Frei E, Straub J, et al. Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology. 2002;179:85–93. doi:10.1016/S0300-483X(02)00322-0
  • Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572–578. doi:10.1016/j.jnutbio.2004.07.005
  • Golub MS, Gershwin ME, Hurley LS, et al. Studies of marginal zinc deprivation in rhesus monkeys: infant behavior. Am J Clin Nutr. 1985;42:1229–1239. doi:10.1093/ajcn/42.6.1229
  • Fun H-K, Quah CK, Viveka S, et al. 2-[(E)-(2,4-Dimethylphenyl)iminomethyl]phenol. Acta Cryst. 2011;E67:o1933. doi:10.1107/S1600536811026110
  • Elmali A, Elerman Y, Zeyrek CT. Conformational study and structure of N-(2,5-methylphenyl)salicylaldimine. J Mol Struct. 1998;443:123–130. doi:10.1016/S0022-2860(97)00382-7
  • Liang X-S, Li R-D, Wang X-C. Copper-catalyzed asymmetric annulation reactions of carbenes with 2-iminyl- or 2-acyl-substituted phenols: convenient access to enantioenriched 2,3-dihydrobenzofurans. Angew Chem Int Ed. 2019;58:13885–13889. doi:10.1002/anie.201907943
  • The program BrukerSAINT. Madison, WI, USA: Bruker AXS Inc.; 2012.
  • Sheldrick GM. SADABS Software for Empirical Absorption Corrections. Göttingen, Germany: University of Göttingen; 1996.
  • Sheldrick GM. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. A. 2015;71:3–8. doi:10.1107/S2053273314026370
  • Farrugia LJ. WinGX and Ortep for Windows: an update. J Appl Cryst. 2012;45:849–854. doi:10.1107/S0021889812029111
  • Macrae CF, Bruno IJ, Chisholm JA, et al. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–470. doi:10.1107/S0021889807067908
  • Fekete T, Tumah H, Woodwell J, et al. A comparison of serial plate agar dilution, Bauer-Kirby disk diffusion, and the Vitek AutoMicrobic system for the determination of susceptibilities of Klebsiella spp., Enterobacter spp., and Pseudomonas aeruginosa to ten antimicrobial agents. Diagn Microbiol Infect Dis. 1994;18:251–258. doi:10.1016/0732-8893(94)90028-0
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–1112. doi:10.1093/jnci/82.13.1107
  • Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122. doi:10.1016/S0010-8545(00)80009-0
  • Dehkhodaei M, Khorshidifard M, Rudbari HA, et al. Synthesis, characterization, crystal structure and DNA, HSA-binding studies of four Schiff base complexes derived from salicylaldehyde and isopropylamine. Inorganica Chim. Acta. 2017;466:48–60. doi:10.1016/j.ica.2017.05.035
  • Devi J, Sharma S, Kumar S, et al. Synthesis, characterization, in vitro antimicrobial and cytotoxic studies of Co(II), Ni(II), Cu(II), and Zn(II) complexes obtained from Schiff base ligands of 1,2,3,4-tetrahydro-naphthalen-1-ylamine. Appl Organomet Chem. 2022;36(8):e6760. doi:10.1002/aoc.6760
  • Aritake Y, Akitsu T. The role of chiral dopants in organic/inorganic hybrid materials containing chiral Schiff base Ni(II), Cu(II) and Zn(II) complexes. Polyhedron. 2012;31:278–284. doi:10.1016/j.poly.2011.09.025
  • Niu M-J, Li Z, Chang GL, et al. Crystal structure, cytotoxicity and interaction with DNA of zinc(II) complexes with o-vanillin Schiff base ligands. PLOS ONE. 2015;10:e0130922. doi:10.1371/journal.pone.0130922
  • Abdolmaleki S, Yarmohammadi N, Adibi H, et al. Synthesis, X-ray studies, electrochemical properties, evaluation as in vitro cytotoxic and antibacterial agents of two antimony (III) complexes with dipicolinic acid. Polyhedron. 2019;159:239–250. doi:10.1016/j.poly.2018.11.063
  • Ferraz KSO, Silva NF, da Silva JG, et al. Investigation on the pharmacological profile of 2,6-diacetylpyridine bis(benzoylhydrazone) derivatives and their antimony(III) and bismuth(III) complexes. Eur J Med Chem. 2012;53:98–106. doi:10.1016/j.ejmech.2012.03.040
  • Kotian A, Kamat V, Naik K, et al. 8-Hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones: crystal structures, spectral characterization and in vitro cytotoxic studies of their Co(III), Ni(II) and Cu(II) complexes. Bioorg Chem. 2021;112:104962. doi:10.1016/j.bioorg.2021.104962
  • Reis DC, Pinto MCX, Souza-Fagundes EM, et al. Antimony(III) complexes with 2-benzoylpyridine-derived thiosemicarbazones: cytotoxicity against human leukemia cell lines. Eur J Med Chem. 2010;45(9):3904–3910. doi:10.1016/j.ejmech.2010.05.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.