0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of quercetin derivatives as cytotoxic against breast cancer MCF-7 cell line in vitro and in silico studies

ORCID Icon, ORCID Icon, , , , , & show all
Received 29 Mar 2024, Accepted 09 Jul 2024, Published online: 05 Aug 2024

References

  • Łukasiewicz S, Czeczelewski M, Forma A, et al. Breast cancer—epidemiology, risk factors, classification, prognostic markers and current treatment strategies—an updated review. Cancers. 2021;13(17):4287. doi:10.3390/cancers13174287
  • Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: Cancer Today. Lyon France: Int Agency Res Cancer. 2018;3(20):2019. doi:10.1002/ijc.33588
  • Qattan MY, Khan MI, Alharbi SH, et al. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signaling pathways. Molecules. 2022;27(24):8864. doi:10.3390/molecules27248864
  • Sheng ZZ. Anticancer effects of catechin flavonoid in human glioma cells are mediated via autophagy induction, cell cycle arrest, inhibition of cell migration and invasion and targeting MAPK/ERK signaling pathway. J BU ON. 2020;25:1084–1090. https://www.jbuon.com/archive/25-2-1084.pdf
  • Zahra KF, Lefter R, Ali A, et al. The involvement of the oxidative stress status in cancer pathology: a double view on the role of the sntioxidants. Oxidative Medicine Cellular Longevity. 2021;2021:9965916. doi:10.1155/2021/9965916
  • David AVA, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacognosy Rev. 2016;10(20):84. doi:10.4103/0973-7847.194044
  • Huynh NT, Smagghe G, Gonzales GB, et al. Bioconversion of kaempferol and quercetin glucosides from plant sources using rhizopus spp. Fermentation. 2018;4(4):102. doi:10.3390/fermentation4040102
  • Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technology. 2016;56:21–38. doi:10.1016/j.tifs.2016.07.004
  • Michala A-S, Pritsa A. Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases. 2022;10(3):37. doi:10.3390/diseases10030037
  • Janeczko M, Gmur D, Kochanowicz E, et al. Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biology. 2022;126(6–7):407–420. doi:10.1016/j.funbio.2022.05.002
  • Wadhwa K, Kadian V, Puri V, et al. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus. 2022;2(2):100257. doi:10.1016/j.phyplu.2022.100257
  • Wang R, Yang L, Li S, et al. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1) and epithelial cell adhesion molecule (EpCAM). Medical Sci Monitor: Int Medical J Experimental Clinical Res. 2018;24:412. doi:10.12659/msm.908022
  • Ghafouri-Fard S, Khoshbakht T, Hussen BM, et al. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022;22(1):325. doi:10.1186/s12935-022-02747-z
  • Rajhans S, Pandya PN, Rawal RM, et al. CDK1 and CDK2 as potential targets for anticancer activity. Plant Archives. 2020;20(1):895–901. https://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/895-901%20(273).pdf
  • Jasim H, Al-kubaisi Z, Al-Shmgani H. Cytotoxic potential activity of quercetin derivatives on MCF-7 breast cancer cell line. Revis Bionatura. 2023;8(1):92. doi:10.21931/RB/2023.08.01.92
  • Nussinov R, Tsai C-J, Jang H. Anticancer drug resistance: an update and perspective. Drug Resistance Updates. 2021;59:100796. doi:10.1016/j.drup.2021.100796
  • Di Pierro F, Khan A, Iqtadar S, et al. Quercetin as a possible complementary agent for early-stage COVID-19: concluding results of a randomized clinical trial. Frontiers Pharmacol. 2023;13:1096853. doi:10.3389/fphar.2022.1096853
  • Georgiou N, Kakava MG, Routsi EA, et al. Quercetin: a potential polydynamic drug. Molecules. 2023;28(24):8141. doi:10.3390/molecules28248141
  • Asgharian P, Tazekand AP, Hosseini K, et al. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int. 2022;22(1):257. doi:10.1186/s12935-022-02677-w
  • Moodi Z, Bagherzade G, Peters J. Quercetin as a precursor for the synthesis of novel nanoscale Cu (II) complex as a catalyst for alcohol oxidation with high antibacterial activity. Bioinorganic Chem Applications. 2021;2021. doi:10.1155/2021/8818452
  • Ali A, Banerjee S, Kamaal S, et al. Ligand substituent effect on the cytotoxicity activity of two new copper(ii) complexes bearing 8-hydroxyquinoline derivatives: validated by MTT assay and apoptosis in MCF-7 cancer cell line (human breast cancer). RSC Adv. 2021;11(24):14362–14373. doi:10.1039/d1ra00172h
  • Alayyaf AA, Barakat A, Al-Majid AM, et al. Cytotoxicity and apoptosis-induction in MCF-7 cells for new Pd (II) complex based on s-triazine ligand: synthesis, single crystal x-ray diffraction analysis and structural investigations. Crystals. 2023;13(10):1472. doi:10.3390/cryst13101472
  • Sultan R, Ahmed A, Wei L, et al. The anticancer potential of chemical constituents of Moringa oleifera targeting CDK-2 inhibition in estrogen receptor positive breast cancer using in-silico and in vitro approches. BMC Complement Med Ther. 2023;23(1):396. doi:10.1186/s12906-023-04198-z
  • Awan B, Khan MA, Ahmad I, et al. Norfloxacin derivatives as DNA gyrase and urease inhibitors: synthesis, biological evaluation and molecular docking. Future Medicinal Chem. 2023;15(23):2181–2194. doi:10.4155/fmc-2023-0225
  • Harder E, Damm W, Maple J, et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Computation. 2016;12(1):281–296. doi:10.1021/acs.jctc.5b00864
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749. doi:10.1021/jm0306430
  • Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–1759. doi:10.1021/jm030644s
  • Elekofehinti OO, Iwaloye O, Josiah SS, et al. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol Divers. 2021;25(3):1761–1773. doi:10.1007/s11030-020-10151-w
  • Amat-Ur-Rasool H, Ahmed M, Hasnain S, et al. In silico design of dual-binding site anti-cholinesterase phytochemical heterodimers as treatment options for Alzheimer’s disease. Curr Issues Mol Biol. 2021;44(1):152–175. doi:10.3390/cimb44010012
  • Shultz MD. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J Med Chem. 2019;62(4):1701–1714. doi:10.1021/acs.jmedchem.8b00686
  • Martin YC. A bioavailability score. J Med Chem. 2005;48(9):3164–3170. doi:10.1021/jm0492002
  • Skoraczyński G, Kitlas M, Miasojedow B, et al. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning. J Cheminformatics. 2023;15(1):6. doi:10.1186/s13321-023-00678-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.