105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Semiotic Aspects of Differential Equations: Analytical and Graphical Competency in the USA and Tunisia

ORCID Icon & ORCID Icon

References

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215–241.
  • Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29(2), 94 − 107.
  • Artigue, M. (1987). Ingénierie didactique à propos d’équations différentielles. In J. Bergeron, N. Herscovics, & C. Kieran (Eds), Proceedings of the 11th PME international conference, volume 3 (pp. 236–242). Montreal, Canada: IGPME.
  • Artigue, M., & Gautheron, V. (1983). Systèmes différentiels, étude graphique. Paris: CEDIC.
  • Bibi, A., Zamri S., Abedalaziz, N., & Ahmad, M. (2017). Teaching and learning of differential equation: A critical review to explore potential area for reform movement. International Journal for Innovative Research in Multidisciplinary Field, 3(6), 225–235.
  • Camacho-Machín, M., & Guerrero-Ortiz, C. (2015) Identifying and exploring relationships between contextual situations and ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 46(8), 1077–1095.
  • Camacho-Machín, M., Perdomo-Díaz, J., & Santos-Trigo, M. (2012). An exploration of students’ conceptual knowledge built in a first ordinary differential equations course (Part I). The Teaching of Mathematics, XV(1), 1–20.
  • Czocher, J. (2017). How can emphasizing mathematical modeling principles benefit students in a traditionally taught differential equations course? Journal of Mathematical Behavior, 45, 78–94.
  • Dana Picard, T. & Kidron, I. (2008). Exploring the phase space of a system of differential equations: Different mathematical registers. International Journal of Science and Mathematics Education, 6, 695–717.
  • Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Science Cognitives, 5(1), 37–65.
  • Duval, R. (1995). Sémiosis et pensée: registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.
  • Duval, R. (2017). Understanding the mathematical way of thinking: The registers of semiotic representation. Cham: Springer.
  • Eisenberg, T., & Dreyfus, T. (1991). On the reluctance to visualize in mathematics. In W. Zimmermann & S. Cunningham (Eds), Visualization in teaching and learning mathematics (pp. 25–37). Washington, DC: Mathematical Association of America.
  • Guerrero-Ortiz, C., Camacho-Machín, M., & Mejía-Velasco, H. (2010). Dificultades de los estudiantes en la interpretación de las soluciones de ecuaciones diferenciales ordinarias que modelan un problema. Enseñanza de las Ciencias, 28(3), 341–352.
  • Guerrero-Ortiz, C., Mejía-Velasco, H., & Camacho-Machín, M. (2016). Representations of a mathematical model as a means of analyzing growth phenomena. Journal of Mathematical Behavior, 42, 109–126.
  • Habre, S. (2000). Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behavior, 18(4), 455–472.
  • Habre, S. (2012). Improving understanding in ordinary differential equations through writing in a dynamical environment. Teaching Mathematics and Its Applications, 31(3), 153–166.
  • Institut Préparatoire aux Etudes d'Ingénieurs El Manar (n.d.). Classes préparatoires PC-PT programme de mathématiques. Retrieved from http://www.ipeiem.rnu.tn/useruploads/downloads/514756557040_09_21_44.pdf
  • Kouki, R. (2018). L’articulation des dimensions syntaxique et sémantique en algèbre du secondaire. Recherches en Didactique des Mathématiques, 38(1), 43–78.
  • Kouki, R., & Griffiths, B. (2020). Introducing Taylor series and local approximations using a historical and semiotic approach. International Electronic Journal of Mathematics Education, 15(2), em0573.
  • Kwon, O., Rasmussen, C., & Allen, K. (2005). Students’ retention of knowledge and skills in differential equations. School Science and Mathematics, 105(5), 227–239.
  • Mallet, D., & McCue, S. (2009). Constructive development of the solutions of linear equations in introductory ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 40(5), 587–595.
  • Moru, E., & Qhobela, M. (2019). Social science students’ concept images and concept definitions of anti-derivatives. Pythagoras, 40(1), article 484.
  • Mudaly, V. (2014). A visualisation-based semiotic analysis of learners’ conceptual understanding of graphical functional relationships. African Journal of Research in Mathematics, Science and Technology Education, 18(1), 3–13.
  • Nagle, R.K., Saff, E, & Snider, A. (2018). Fundamentals of Differential Equations. Boston, MA: Pearson.
  • Naidoo, D., & Green, W. (2011). Semiotic mediation through coherent discourse in science classrooms. African Journal of Research in Mathematics, Science and Technology Education, 15(1), 34–50.
  • Ngirishi, H., & Bansilal, S. (2019). An exploration of high school learners’ understanding of geometric concepts. Problems of Education in the 21st Century, 77(1), 82–96.
  • Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior, 20(1), 55–87.
  • Rasmussen, C., & Wawro, M. (2017). Post-calculus research in undergraduate mathematics education. In J. Cai (Ed.), The compendium for research in mathematics education. Reston, VA: National Council of Teachers of Mathematics.
  • Raychaudhuri, D. (2008). Dynamics of a definition: A framework to analyse student construction of the concept of solution to a differential equation. International Journal of Mathematical Education in Science and Technology, 39(2), 161–177.
  • Smith, C., Julie, C., & Gierdien, F. (2020). The integration of semiotic resources and modalities in the teaching of geometry in a Grade 9 class in a South African high school: The four cases of congruency. South African Journal of Education, 40(2), article 1682.
  • Trigueros, M. (2004). Understanding the meaning and representation of straight line solutions of systems of differential equations. In D. McDougall & J. Ross (Eds.), Proceedings of the 26th annual meeting of PME-NA (pp. 127–134). Toronto: University of Toronto.
  • Ubah, I., & Bansilal, S. (2019). The use of semiotic representations in reasoning about similar triangles in Euclidean geometry. Pythagoras, 40(1), article 480.
  • Zeynivandnezhad, F. & Bates, R. (2018). Explicating mathematical thinking in differential equations using a computer algebra system. International Journal of Mathematical Education in Science and Technology, 49(5), 680–704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.