2,304
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A)

, , , , , , ORCID Icon & show all
Pages 17-33 | Received 15 Aug 2017, Accepted 31 Oct 2017, Published online: 02 Jan 2018

References

  • Bijveld MM, Florijn RJ, Bergen AA, et al. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120:2072–81. doi:10.1016/j.ophtha.2013.03.002.
  • Boycott KM, Sauvé Y, MacDonald IM. X-Linked congenital stationary night blindness. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., eds. GeneReviews(R). Seattle (WA): University of Washington. All rights reserved. 1993.
  • Strom TM, Nyakatura G, Apfelstedt-Sylla E, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genetics. 1998;19:260–3. doi:10.1038/940.
  • Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genetics. 1998;19:264–7. doi:10.1038/947.
  • Heidelberger R, Thoreson WB, Witkovsky P. Synaptic transmission at retinal ribbon synapses. Progress Retinal Eye Res. 2005;24:682–720. doi:10.1016/j.preteyeres.2005.04.002.
  • Morgans CW. Localization of the alpha(1F) calcium channel subunit in the rat retina. Invest Ophthalmol Visual Sci. 2001;42:2414–8.
  • Liu X, Kerov V, Haeseleer F, et al. Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels (Austin, Tex). 2013;7:514–23. doi:10.4161/chan.26376.
  • Burtscher V, Schicker K, Novikova E, et al. Spectrum of Cav1.4 dysfunction in congenital stationary night blindness type 2. Biochim Et Biophys Acta. 2014;1838:2053–65. doi:10.1016/j.bbamem.2014.04.023.
  • Boycott KM, Pearce WG, Bech-Hansen NT. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Canadian J Ophthalmol J Canadien D'ophtalmologie. 2000;35:204–13. doi:10.1016/S0008-4182(00)80031-9.
  • Miyake Y, Yagasaki K, Horiguchi M, et al. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol (Chicago, Ill: 1960). 1986;104:1013–20. doi:10.1001/archopht.1986.01050190071042.
  • Knoflach D, Kerov V, Sartori SB, et al. Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2. Channels (Austin, Tex). 2013;7:503–13. doi:10.4161/chan.26368.
  • Specht D, Wu SB, Turner P, et al. Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Visual Sci. 2009;50:505–15. doi:10.1167/iovs.08-2758.
  • Chang B, Heckenlively JR, Bayley PR, et al. The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Visual Neurosci. 2006;23:11–24. doi:10.1017/S095252380623102X.
  • Mansergh F, Orton NC, Vessey JP, et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genetics. 2005;14:3035–46. doi:10.1093/hmg/ddi336.
  • Raven MA, Orton NC, Nassar H, et al. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol. 2008;506:745–58. doi:10.1002/cne.21526.
  • Regus-Leidig H, Atorf J, Feigenspan A, et al. Photoreceptor degeneration in two mouse models for congenital stationary night blindness type 2. PloS One. 2014;9:e86769. doi:10.1371/journal.pone.0086769.
  • Michalakis S, Shaltiel L, Sothilingam V, et al. Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2. Hum Mol Genetics. 2014;23:1538–50. doi:10.1093/hmg/ddt541.
  • Lodha N, Bonfield S, Orton NC, et al. Congenital stationary night blindness in mice – a tale of two Cacna1f mutants. Adv Exp Med Biol. 2010;664:549–58. doi:10.1007/978-1-4419-1399-9_63.
  • Wutz K, Sauer C, Zrenner E, et al. Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. Eur J Hum Genet. 2002;10:449–56. doi:10.1038/sj.ejhg.5200828.
  • Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PloS One. 2013;8:e63853. doi:10.1371/journal.pone.0063853.
  • Vogler S, Pannicke T, Hollborn M, et al. Muller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2. PloS One. 2014;8:e61631. doi:10.1371/journal.pone.0061631.
  • Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90. doi:10.1016/S0074-7696(03)30005-1.
  • Deming JD, Pak JS, Brown BM, et al. Visual cone arrestin 4 contributes to visual function and cone health. Invest Ophthalmol Visual Sci. 2015;56:5407–16. doi:10.1167/iovs.15-16647.
  • Thanos S, Böhm MR, Meyer zu Hörste M, et al. Role of crystallins in ocular neuroprotection and axonal regeneration. Progress Retinal Eye Res. 2014;42:145–61. doi:10.1016/j.preteyeres.2014.06.004.
  • Emery M, Schorderet DF, Roduit R. Acute hypoglycemia induces retinal cell death in mouse. PloS One. 2011;6:e21586. doi:10.1371/journal.pone.0021586.
  • Rattner A, Nathans J. The genomic response to retinal disease and injury: evidence for endothelin signaling from photoreceptors to glia. J Neurosci. 2005;25:4540–9. doi:10.1523/JNEUROSCI.0492-05.2005.
  • Artemyev NO. Interactions between catalytic and inhibitory subunits of PDE6. Methods Mol Biol (Clifton, NJ). 2005;307:277–88.
  • Schniepp R, Kohler K, Ladewig T, et al. Retinal colocalization and in vitro interaction of the glutamate transporter EAAT3 and the serum- and glucocorticoid-inducible kinase SGK1 [correction]. Invest Ophthalmol Visual Sci. 2004;45:1442–9. doi:10.1167/iovs.03-0062.
  • Hughes BA, Kumar G, Yuan Y, et al. Cloning and functional expression of human retinal kir2.4, a pH-sensitive inwardly rectifying K(+) channel. Am J Physiol Cell Physiol. 2000;279:C771–84.
  • Horiuchi H, Lippé R, McBride HM, et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell. 1997;90:1149–59. doi:10.1016/S0092-8674(00)80380-3.
  • Khani SC, Abitbol M, Yamamoto S, et al. Characterization and chromosomal localization of the gene for human rhodopsin kinase. Genomics. 1996;35:571–6. doi:10.1006/geno.1996.0399.
  • Lerea CL, Buntmilam AH, Hurley JB. Alpha-transducin is present in blue-sensitive, green-sensitive and red-sensitive cone photoreceptors in the human retina. Neuron. 1989;3:367–76. doi:10.1016/0896-6273(89)90261-4.
  • Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science (New York, NY). 1986;232:193–202. doi:10.1126/science.2937147.
  • Applebury ML, Antoch MP, Baxter LC, et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron. 2000;27:513–23. doi:10.1016/S0896-6273(00)00062-3.
  • Szél Á, Röhlich P, Caffé AR, et al. Unique topographic separation of two spectral classes of cones in the mouse retina. J Comparative Neurol. 1992;325:327–42. doi:10.1002/cne.903250302.
  • Zhu X, Ma B, Babu S, et al. Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors. FEBS Letters. 2002;524:116–22. doi:10.1016/S0014-5793(02)03014-4.
  • Samuel MA, Zhang Y, Meister M, et al. Age-related alterations in neurons of the mouse retina. J Neurosci. 2011;31:16033–44. doi:10.1523/JNEUROSCI.3580-11.2011.
  • Terzibasi E, Calamusa M, Novelli E, et al. Age-dependent remodelling of retinal circuitry. Neurobiol Aging. 2009;30:819–28. doi:10.1016/j.neurobiolaging.2007.08.017.
  • Reese BE, Tan SS. Clonal boundary analysis in the developing retina using X-inactivation transgenic mosaic mice. Seminars Cell Dev Biol. 1998;9:285–92. doi:10.1006/scdb.1998.0231.
  • Doering CJ, Rehak R, Bonfield S, et al. Modified Ca(v)1.4 expression in the Cacna1f(nob2) mouse due to alternative splicing of an ETn inserted in exon 2. PloS One. 2008;3:e2538. doi:10.1371/journal.pone.0002538.
  • Bayley PR, Morgans CW. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comparative Neurol. 2007;500:286–98. doi:10.1002/cne.21188.
  • Umino Y, Solessio E, Barlow RB. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J Neurosci. 2008;28:189–98. doi:10.1523/JNEUROSCI.3551-07.2008.
  • Ma H, Thapa A, Morris LM, et al. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study. Hum Mol Genetics. 2013;22:3906–19. doi:10.1093/hmg/ddt245.
  • Znoiko SL, Rohrer B, Lu K, et al. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65−/− mouse at early ages. Invest Ophthalmol Visual Sci. 2005;46:1473–9. doi:10.1167/iovs.04-0653.
  • Haverkamp S, Michalakis S, Claes E, et al. Synaptic plasticity in CNGA3(−/−) mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci. 2006;26:5248–55. doi:10.1523/JNEUROSCI.4483-05.2006.
  • Knoflach D, Schicker K, Glösmann M, et al. Gain-of-function nature of Cav1.4 L-type calcium channels alters firing properties of mouse retinal ganglion cells. Channels (Austin, Tex). 2015;9:298–306. doi:10.1080/19336950.2015.1078040.
  • Zhang SX, Sanders E, Fliesler SJ, et al. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res. 2014;125:30–40. doi:10.1016/j.exer.2014.04.015.
  • Tsukamoto Y, Morigiwa K, Ueda M, et al. Microcircuits for night vision in mouse retina. J Neurosci. 2001;21:8616–23.
  • Zhu Y, Natoli R, Valter K, Stone J. Microarray analysis of hyperoxia stressed mouse retina: differential gene expression in the inferior and superior region. Adv Exp Med Biol. 2010;664:217–22. doi:10.1007/978-1-4419-1399-9_25.
  • Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science (New York, NY). 2000;287:864–9. doi:10.1126/science.287.5454.864.
  • Fei Y. Cone neurite sprouting: an early onset abnormality of the cone photoreceptors in the retinal degeneration mouse. Mol Vision. 2002;8:306–14.
  • Haq W, Arango-Gonzalez B, Zrenner E, et al. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Frontiers Neural Circuits. 2014;8:108. doi:10.3389/fncir.2014.00108.
  • Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci. 2000;3:1121–7. doi:10.1038/80639.
  • Jalkanen R, Mäntyjärvi M, Tobias R, et al. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Medical Genetics. 2006;43:699–704. doi:10.1136/jmg.2006.040741.
  • Hauke J, Schild A, Neugebauer A, et al. A novel large in-frame deletion within the CACNA1F gene associates with a cone-rod dystrophy 3-like phenotype. PloS One. 2013;8:e76414. doi:10.1371/journal.pone.0076414.
  • Gregg RG, Mukhopadhyay S, Candille SI, et al. Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Visual Sci. 2003;44:378–84. doi:10.1167/iovs.02-0501.
  • Raghuram A, Hansen RM, Moskowitz A, et al. Photoreceptor and postreceptor responses in congenital stationary night blindness. Invest Ophthalmol Visual Sci. 2013;54:4648–58. doi:10.1167/iovs.13-12111.
  • Soto F, Kerschensteiner D. Synaptic remodeling of neuronal circuits in early retinal degeneration. Front Cell Neurosci. 2015;9:395. doi:10.3389/fncel.2015.00395.
  • Rigaudière F, Roux C, Lachapelle P, et al. ERGs in female carriers of incomplete congenital stationary night blindness (I-CSNB). A family report. Documenta Ophthalmologica Adv Ophthalmol. 2003;107:203–12. doi:10.1023/A:1026212318245.
  • Grossman GH, Pauer GJ, Narendra U, et al. Early synaptic defects in tulp1−/− mice. Invest Ophthalmol Visual Sci. 2009;50:3074–83. doi:10.1167/iovs.08-3190.
  • Zhu X, Brown B, Li A, et al. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. J Neurosci. 2003;23:6152–60.
  • Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J. 1998;17:5129–40. doi:10.1093/emboj/17.17.5129.
  • Young S, Rothbard J, Parker PJ. A monoclonal antibody recognising the site of limited proteolysis of protein kinase C. Inhibition of down-regulation in vivo. Eur J Biochem. 1988;173:247–52. doi:10.1111/j.1432-1033.1988.tb13991.x.
  • Prusky GT, Alam NM, Beekman S, et al. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Visual Sci. 2004;45:4611–6. doi:10.1167/iovs.04-0541.
  • Kuny S, Cho WJ, Dimopoulos IS, et al. Early onset ultrastructural and functional defects in RPE and Photoreceptors of a Stargardt-Like Macular Dystrophy (STGD3) transgenic mouse model. Invest Ophthalmol Visual Sci. 2015;56:7109–21. doi:10.1167/iovs.15-17567.
  • Pinilla I, Lund RD, Sauvé Y. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats. Vision Res. 2004;44:2467–74. doi:10.1016/j.visres.2004.05.020.
  • Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Investigative Ophthalmol Visual Sci. 1994;35:2948–61.
  • Lamb TD, Pugh EN, Jr. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992;449:719–58. doi:10.1113/jphysiol.1992.sp019111.