2,817
Views
5
CrossRef citations to date
0
Altmetric
Review

X-ray crystallography of TRP channels

, , & ORCID Icon
Pages 137-152 | Received 12 Mar 2018, Accepted 21 Mar 2018, Published online: 30 Apr 2018

References

  • Minke B. The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet. 2010;24(4):216–33. doi:10.3109/01677063.2010.514369. PMID: 21067449
  • Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2(4):1313–23. doi:10.1016/0896-6273(89)90069-X. PMID: 2516726
  • Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell. 2002;108(5):595–8. doi:10.1016/S0092-8674(02)00670-0. PMID: 11893331
  • Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517–524. doi:10.1038/nature02196. PMID: 14654832
  • Guibert C, Ducret T, Savineau JP. Expression and physiological roles of TRP channels in smooth muscle cells. Adv Exp Med Biol. 2011;704:687–706. doi:10.1007/978-94-007-026. PMID: 21290322
  • Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. 2010;2(10):a003962. doi:10.1101/cshperspect.a003962. PMID: 20861159
  • Peng JB, Chen XZ, Berger UV, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–46. doi:10.1074/jbc.274.32.22739. PMID: 10428857
  • Yue L, Peng JB, Hediger MA, et al. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature. 2001;410(6829):705–9. doi:10.1038/35070596. PMID: 11287959
  • Owsianik G, Talavera K, Voets T, et al. Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006;68:685–717. doi:10.1146/annurev.physiol.68.040204.101406. PMID: 16460288
  • Nilius B, Owsianik G, Voets T, et al. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165–217. doi:10.1152/physrev.00021.2006. PMID: 17237345
  • Lehen'kyi V, Raphael M, Prevarskaya N. The role of the TRPV6 channel in cancer. J Physiol. 2012;590(6):1369–76. doi:10.1113/jphysiol.2011.225862. PMID: 22331416
  • Wissenbach U, Niemeyer B, Himmerkus N, et al. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun. 2004;322(4):1359–63. doi:10.1016/j.bbrc.2004.08.042. PMID: 15336984
  • Wissenbach U, Niemeyer BA, Fixemer T, et al. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem. 2001;276(22):19461–8. doi:10.1074/jbc.M009895200. PMID: 11278579
  • Zhang SS, Xie X, Wen J, et al. TRPV6 plays a new role in predicting survival of patients with esophageal squamous cell carcinoma. Diagn Pathol. 2016;11(1):14. doi:10.1186/s13000-016-0457-7. PMID: 26818094
  • Grieben M, Pike AC, Shintre CA, et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat Structural Mol Biol. 2017;24(2):114–122. doi:10.1038/nsmb.3343.
  • Huynh KW, Cohen MR, Jiang J, et al. Structure of the full-length TRPV2 channel by cryo-EM. Nature Communications. 2016;7:11130. doi:10.1038/ncomms11130. PMID: 27021073
  • Jin P, Bulkley D, Guo Y, et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature. 2017;547(7661):118–122. doi:10.1038/nature22981. PMID: 28658211
  • Shen PS, Shen PS, Yang X, et al. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell. 2016;167(3):763–773. doi:10.1016/j.cell.2016.09.048. PMID: 27768895
  • Zubcevic L, Herzik MA, Jr, Chung BC, et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Structural Mol Biol. 2016;23(2):180–186. doi:10.1038/nsmb.3159.
  • Gao Y, Cao E, Julius D, et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534(7607):347–51. doi:10.1038/nature17964. PMID: 27281200
  • Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504(7478):107–12. doi:10.1038/nature12822. PMID: 24305160
  • McGoldrick LL, Singh AK, Saotome K, et al. Opening of the human epithelial calcium channel TRPV6. Nature. 2018;553(7687):233–237. doi:10.1038/nature25182. PMID: 29258289
  • Yin Y, Wu M, Zubcevic L, et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science. 2018;359(6372):237–241. doi:10.1126/science.aan4325. PMID: 29217583
  • Paulsen CE, Armache JP, Gao Y, et al. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;525(7570):552. doi:10.1038/nature14871. PMID: 26200340
  • Hirschi M, Herzik MA Jr, Wie J, et al. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature. 2017;550(7676):411–414. doi:10.1038/nature24055. PMID: 29019979
  • Chen Q, She J, Zeng W, et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature. 2017;550(7676):415–418. doi:10.1038/nature24035. PMID: 29019981
  • Li M, Zhang WK, Benvin NM, et al. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat Struct Mol Biol. 2017;24(3):205–213. doi:10.1038/nsmb.3362. PMID: 28112729
  • Schmiege P, Fine M, Blobel G, et al. Human TRPML1 channel structures in open and closed conformations. Nature. 2017;550(7676):366–370. doi:10.1038/nature24036. PMID: 29019983
  • Zhou X, Li M, Su D, et al. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol. 2017;24(12):1146–1154. doi:10.1038/nsmb.3502. PMID: 29106414
  • Deng Z, Paknejad N, Maksaev G, et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol. 2018;25(3):252–260. doi:10.1038/s41594-018-0037-5. PMID: 29483651
  • Kuhlbrandt W. Biochemistry. The resolution revolution. Science. 2014;343(6178):1443–4. doi:10.1126/science.1251652. PMID: 24675944
  • McCleverty CJ, Koesema E, Patapoutian A, et al. Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci. 2006;15(9):2201–6. doi:10.1110/ps.062357206. PMID: 16882997
  • Yamaguchi H, Matsushita M, Nairn AC, et al. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell. 2001;7(5):1047–57. doi:10.1016/S1097-2765(01)00256-8. PMID: 11389851
  • Jin X, Touhey J, Gaudet R. Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem. 2006;281(35):25006–10. doi:10.1074/jbc.C600153200. PMID: 16809337
  • Lishko PV, Procko E, Jin X, et al. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron. 2007;54(6):905–18. doi:10.1016/j.neuron.2007.05.027. PMID: 17582331
  • Phelps CB, Huang RJ, Lishko P, et al. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry. 2008;47(8):2476–84. doi:10.1021/bi702109w. PMID: 18232717
  • Fujiwara Y, Minor DL, Jr. X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol. 2008;383(4):854–70. doi:10.1016/j.jmb.2008.08.059. PMID: 18782578
  • Yu Y, Ulbrich MH, Li MH, et al. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A. 2009;106(28):11558–63. doi:10.1073/pnas.0903684106. PMID: 19556541
  • Schumann F, Hoffmeister H, Bader R,, et al. Ca2+-dependent conformational changes in a C-terminal cytosolic domain of polycystin-2. J Biol Chem. 2009;284(36):24372–83. doi:10.1074/jbc.M109.025635. PMID: 19546223
  • Petri ET, Celic A, Kennedy SD, et al. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci U S A. 2010;107(20):9176–81. doi:10.1073/pnas.0912295107. PMID: 20439752
  • Li M, Yu Y, Yang J. Structural biology of TRP channels. Adv Exp Med Biol. 2011;704:1–23. doi:10.1007/978-94-007-0265-3_1. PMID: 21290287
  • Moiseenkova-Bell VY, Wensel TG. Hot on the trail of TRP channel structure. J Gen Physiol. 2009;133(3):239–44. doi:10.1085/jgp.200810123. PMID: 19237588
  • Singh AK, Saotome K, Sobolevsky AI. Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep;.2017;7(1):10669. doi:10.1038/s41598-017-10993-9. PMID: 28878326
  • Saotome K, Singh AK, Yelshanskaya M, et al. Crystal structure of the epithelial calcium channel TRPV6. Nature. 2016;534(7608):506–11. doi:10.1038/nature17975. PMID: 27296226
  • Saotome K, Singh AK, Sobolevsky AI. Determining the Crystal Structure of TRPV6, in Calcium Entry Channels in Non-Excitable Cells. 2017. Boca Raton (FL): CRC Press; p. 275–292.
  • Goehring A, Lee CH, Wang KH, et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc. 2014;9(11):2574–85. doi:10.1038/nprot.2014.173. PMID: 25299155
  • Kawate T, Gouaux E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure. 2006;14(4):673–81. doi:10.1016/j.str.2006.01.013. PMID: 16615909
  • Chen H1, Shaffer PL, Huang X, et al. Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expr Purif. 2013;88(1):134–42. doi:10.1016/j.pep.2012.12.003. PMID: 23268112
  • Hattori M, Hibbs RE, Gouaux DE. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure. 2012;20(8):1293–9. doi:10.1016/j.str.2012.06.009. PMID: 22884106
  • Heras B, Martin JL. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 9):1173–80. doi:10.1107/S0907444905019451. PMID: 16131749
  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, et al. Phaser crystallographic software. J Appl Crystallogr. 2007;40(Pt 4):658–674. doi:10.1107/S0021889807021206. PMID: 19461840
  • Lebedev AA, Vagin AA, Murshudov GN. Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D Biol Crystallogr. 2008;64(Pt 1):33–9. doi:10.1107/S0907444907049839. PMID: 18094465
  • Navaza J, Saludjian P. [33]AMoRe: An automated molecular replacement program package. Methods Enzymol. 1997;276:581–594. doi:10.1016/S0076-6879(97)76079-8. PMID: 27799116
  • Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2256–68. doi:10.1107/S0907444904026460. PMID: 15572779
  • Adams PD1, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213–21. PMID: 20124702
  • Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(Pt 3):240–55. doi:10.1107/S0907444996012255. PMID: 15299926
  • Emsley P, Lohkamp B, Scott W, et al. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501. doi:10.1107/S0907444910007493. PMID: 20383002
  • Tang L, Gamal El-Din TM, Payandeh J, et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature. 2014;505(7481):56–61. doi:10.1038/nature12775. PMID: 24270805
  • McCusker EC, Bagnéris C, Naylor CE, et al. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun. 2012;3:1102. doi:10.1038/ncomms2077. PMID: 23033078
  • Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280(5360):69–77. doi:10.1126/science.280.5360.69. PMID: 9525859
  • Ghosh E, Kumari P, Jaiman D, et al. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol. 2015;16(2):69–81. doi:10.1038/nrm3933. PMID: 25589408
  • Thorsen TS, Matt R, Weis WI, et al. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis. Structure. 2014;22(11):1657–64. doi:10.1016/j.str.2014.08.022. PMID: 25450769
  • Chun E, Thompson AA, Liu W, et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure. 2012;20(6):967–76. doi:10.1016/j.str.2012.04.010. PMID: 22681902
  • Lee CH, MacKinnon R. Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell. 2017;168(1-2):111. doi:10.1016/j.cell.2016.12.023. PMID: 28086084
  • Li M, Zhou X, Wang S, et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature. 2017;542(7639): doi:10.1038/nature20819.
  • Tao X, Hite RK, MacKinnon R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature. 2017;541(7635):46–51. doi:10.1038/nature20608. PMID: 27974795
  • Hite RK, MacKinnon R. Structural Titration of Slo2.2, a Na+-dependent K+ channel. Cell. 2017;168(3):390–399 e11. doi:10.1016/j.cell.2016.12.030. PMID: 28111072
  • Whicher JR, MacKinnon R. Structure of the voltage-gated K(+) channel Eag1 reveals an alternative voltage sensing mechanism. Science. 2016;353(6300):664–9. doi:10.1126/science.aaf8070. PMID: 27516594