1,726
Views
4
CrossRef citations to date
0
Altmetric
Review

Non-conducting functions of ion channels: The case of integrin-ion channel complexes

&
Pages 185-197 | Received 24 Jun 2022, Accepted 28 Jul 2022, Published online: 08 Aug 2022

References

  • Hille B. Ionic channels of excitable membranes. 3rd ed. Sunderland MA: Sinauer Associates; 2001.
  • Cai SQ, Hernandez L, Wang Y, et al. MPS-1 is a K(+) channel beta-subunit and a serine/threonine kinase. Nat Neurosci. 2005;8(11):1503–1509.
  • Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001;291(5506):1043–1047.
  • Weng J, Cao Y, Moss N, et al. Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem. 2006;281(22):15194–15200.
  • Zeng H, Fei H, Levitan IB. The slowpoke channel binding protein Slob from drosophila melanogaster exhibits regulatable protein kinase activity. Neurosci Lett. 2004;365(1):33–38.
  • Malhotra JD, Kazen-Gillespie K, Hortsch M, et al. Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to Points of cell-cell contact *. J Biol Chem. 2000;275(15):11383–11388.
  • Mochida S, Yokoyama CT, Kim DK, et al. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca 2+ channels. Proc Natl Acad Sci U S A. 1998;95(24):14523–14528.
  • Dolmetsch RE, Pajvani U, Fife K, et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science. 2001;294(5541):333–339.
  • Cai SQ, Wang Y, Park KH, et al. Auto-phosphorylation of a voltage-gated K+ channel controls non-associative learning. EMBO J. 2009;28(11):1601–1611.
  • Inui M, Saito A, Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem. 1987;262(4):1740–1747.
  • Eisenberg RS, McCarthy RT, Milton RL. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J Physiol. 1983;341(1):495–505.
  • Tanabe T, Beam KG, Powell JA, et al. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988;336(6195):134–139.
  • Flucher BE. Skeletal muscle CaV1.1 channelopathies. Pflugers Arch. 2020;472(7):739–754.
  • Vierra NC, Kirmiz M, van der List D, et al. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. Elife. 2019;8:e49953.
  • Kirmiz M, Palacio S, Thapa P, et al. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell. 2018;29(20):2410–2432.
  • Fox PD, Haberkorn CJ, Akin EJ, et al. Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels. J Cell Sci. 2015;128(11):2096–2105.
  • Johnson B, Leek AN, Solé L, et al. Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. Proc Natl Acad Sci U S A. 2018;115(31):E7331–40.
  • Sesti F, Wu X, Liu S. Oxidation of KCNB1 K(+) channels in central nervous system and beyond. World J Biol Chem. 2014;5(2):85–92.
  • Ryazanov AG, Ward MD, Mendola CE, et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc Natl Acad Sci U S A. 1997;94(10):4884–4889.
  • Ryazanova LV, Dorovkov MV, Ansari A, et al. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem. 2004;279(5):3708–3716.
  • Jin J, Desai BN, Navarro B, et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg 2+ homeostasis. Science. 2008;322(5902):756–760.
  • Krapivinsky G, Mochida S, Krapivinsky L, et al. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron. 2006;52(3):485–496.
  • Clark K, Langeslag M, van Leeuwen B, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006;25(2):290–301.
  • Krapivinsky G, Krapivinsky L, Manasian Y, et al. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157(5):1061–1072.
  • Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol. 2006;127(4):421–434.
  • McCrossan ZA, Abbott GW. The MinK-related peptides. Neuropharmacology. 2004;47(6):787–821.
  • Bianchi L, Kwok SM, Driscoll M, et al. A potassium channel-MiRP complex controls neurosensory function in caenorhabditis elegans. J Biol Chem. 2003;278(14):12415–12424.
  • Cotella D, Hernandez-Enriquez B, Duan Z, et al. An evolutionarily conserved mode of modulation of Shaw -like K + channels. FASEB J. 2013;27(4):1381–1393.
  • McEwen DP, Isom LL. Heterophilic interactions of sodium channel beta1 subunits with axonal and glial cell adhesion molecules. J Biol Chem. 2004;279(50):52744–52752.
  • Ratcliffe CF, Westenbroek RE, Curtis R, et al. Sodium channel beta1 and beta3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J Cell Biol. 2001;154(2):427–434.
  • McEwen DP, Meadows LS, Chen C, et al. Sodium channel beta1 subunit-mediated modulation of Nav1.2 currents and cell surface density is dependent on interactions with contactin and ankyrin. J Biol Chem. 2004;279(16):16044–16049.
  • Pan Z, Kao T, Horvath Z, et al. A Common Ankyrin-G-based mechanism retains KCNQ and Na V channels at electrically active domains of the axon. J Neurosci. 2006;26(10):2599–2613.
  • Davis TH, Chen C, Isom LL. Sodium channel beta1 subunits promote neurite outgrowth in cerebellar granule neurons. J Biol Chem. 2004;279(49):51424–51432.
  • Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–1032.
  • Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–367.
  • Walker JL, Assoian RK. Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression. Cancer Metastasis Rev. 2005;24(3):383–393.
  • Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol. 2011;27(1):321–345.
  • Winograd-Katz SE, Fässler R, Geiger B, et al. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol. 2014;15(4):273–288.
  • Horton ER, Byron A, Askari JA, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol. 2015;17(12):1577–1587.
  • Zaidel-Bar R, Itzkovitz S, Ma’ayan A, et al. Functional atlas of the integrin adhesome. Nat Cell Biol. 2007;9(8):858–867.
  • Song MS, Choi SY, Ryu PD, et al. Voltage-Gated K+ channel, Kv3.3 is involved in hemin-induced K562 differentiation. PLoS One. 2016;11(2):e0148633.
  • Atcha H, Meli VS, and Davis CT, et al. Crosstalk between CD11b and Piezo1 mediates macrophage responses to mechanical cues. Front Immunol. 2021;12.
  • Wright JR, Jones S, Parvathy S, et al. The voltage-gated K(+) channel Kv1.3 modulates platelet motility and α(2)β(1) integrin-dependent adhesion to collagen. Platelets. 2022;33:451–461.
  • Wu X, Mogford JE, Platts SH, et al. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J Cell Biol. 1998;143(1):241–252.
  • Wu X, Davis GE, Meininger GA, et al. Regulation of the L-type calcium channel by alpha 5 beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem. 2001;276(32):30285–30292.
  • Waitkus-Edwards KR, Martinez-Lemus LA, Wu X, et al. α 4 β 1 integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction. Circ Res. 2002;90(4):473–480.
  • Chao J-T, Gui P, Zamponi GW, et al. Spatial association of the Cav1.2 calcium channel with α 5 β 1 -integrin. Am J Physiol Cell Physiol. 2011;300(3):C477–489.
  • Gui P, Wu X, Ling S, et al. Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by c-Src and protein kinase A pathways. J Biol Chem. 2006;281(20):14015–14025.
  • Yang Y, Wu X, Gui P, et al. Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem. 2010;285(1):131–141.
  • Wu X, Yang Y, Gui P, et al. Potentiation of large conductance, Ca 2+ -activated K + (BK) channels by α5β1 integrin activation in arteriolar smooth muscle. J Physiol. 2008;586(6):1699–1713.
  • Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60.
  • Zhou W, Liu X, van Wijnbergen Jwm, et al. Identification of PIEZO1 as a potential prognostic marker in gliomas. Sci Rep. 2020;10:16121.
  • Jetta D, Bahrani Fard MR, Sachs F, et al. Adherent cell remodeling on micropatterns is modulated by Piezo1 channels. Sci Rep. 2021;11(1):5088.
  • Chen X, Wanggou S, Bodalia A, et al. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron. 2018;100(4):799–815.e7.
  • Peng J-M, Lin S-H, Yu M-C, et al. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest. 2021;131:133525.
  • Cáceres M, Ortiz L, Recabarren T, et al. TRPM4 Is a novel component of the adhesome required for focal adhesion disassembly, migration and contractility. PLoS One. 2015;10(6):e0130540.
  • Wei J-F, Wei L, Zhou X, et al. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol. 2008;217(2):544–557.
  • Qiang -Y-Y, Li C-Z, Sun R, et al. Along with its favorable prognostic role, CLCA2 inhibits growth and metastasis of nasopharyngeal carcinoma cells via inhibition of FAK/ERK signaling. J Exp Clin Cancer Res. 2018;37(1):34.
  • Sengupta S, Rothenberg KE, Li H, et al. Altering integrin engagement regulates membrane localization of K(ir)2.1 channels. J Cell Sci. 2019;132(17). DOI:10.1242/jcs.225383
  • Birkner K, Wasser B, Ruck T, et al. β1-Integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J Clin Invest. 2020;130(2):715–732.
  • Girault A, Chebli J, Privé A, et al. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair. Respir Res. 2015;16:100.
  • Yu W, Gowda M, Sharad Y, et al. Oxidation of KCNB1 potassium channels triggers apoptotic integrin signaling in the brain. Cell Death Dis. 2017;8:e2737.
  • Yu W, Shin MR, Sesti F. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity via Ras and Akt signaling. FASEB J. 2019;33(12):14680–14689.
  • Wei Y, Shin MR, Sesti F. Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer’s disease. Cell Death Dis. 2018;9(8):820.
  • Forzisi E, Yu W, Rajwade P, et al. Antagonistic roles of Ras-MAPK and Akt signaling in integrin-K + channel complex-mediated cellular apoptosis. FASEB J. 2022;36(5):e22292.
  • Bianchi L, Arcangeli A, Bartolini P, et al. An inward rectifier K+ current modulates in neuroblastoma cells the tyrosine phosphorylation of the pp125FAK and associated proteins: role in neuritogenesis. Biochem Biophys Res Commun. 1995;210(3):823–829.
  • Arcangeli A, Becchetti A, Mannini A, et al. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol. 1993;122(5):1131–1143.
  • Becchetti A, Arcangeli A, Del Bene MR, et al. Response to fibronectin-integrin interaction in leukaemia cells: delayed enhancing of a K+ current. Proc Biol Sci. 1992;248:235–240.
  • Cherubini A, Pillozzi S, Hofmann G, et al. HERG K + channels and β1 integrins interact through the assembly of a macromolecular complex. Ann N Y Acad Sci. 2002;973(1):559–561.
  • Cherubini A, Hofmann G, Pillozzi S, et al. Human ether-a-go-go -related Gene 1 channels are physically linked to β 1 integrins and modulate adhesion-dependent signaling. Mol Biol Cell. 2005;16(6):2972–2983.
  • Hofmann G, Bernabei PA, Crociani O, et al. HERG K+ channels activation during beta(1) integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic leukemia cell line FLG 29.1. J Biol Chem. 2001;276:4923–4931.
  • Duranti C, Iorio J, Lottini T, et al. Harnessing the hERG1/β1 integrin complex via a novel bispecific single-chain antibody: an effective strategy against solid cancers. Mol Cancer Ther. 2021;20(8):1338–1349.
  • Levite M, Cahalon L, Peretz A, et al. Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med. 2000;191(7):1167–1176.
  • Arcangeli A, Bianchi L, Becchetti A, et al. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol. 1995;489(Pt 2):455–471.
  • Arcangeli A, Faravelli L, Bianchi L, et al. Soluble or bound laminin elicit in human neuroblastoma cells short- or long-term potentiation of a K+ inwardly rectifying current: relevance to neuritogenesis. Cell Adhes Commun. 1996;4:369–385.
  • Bianchi L, Wible B, Arcangeli A, et al. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 1998;58(4):815–822.
  • Arcangeli A, Rosati B, Cherubini A, et al. Long-term exposure to retinoic acid induces the expression of IRK1 channels in HERG channel-endowed neuroblastoma cells. Biochem Biophys Res Commun. 1998;244(3):706–711.
  • Arcangeli A, Rosati B, Crociani O, et al. Modulation of HERG current and herg gene expression during retinoic acid treatment of human neuroblastoma cells: potentiating effects of BDNF. J Neurobiol. 1999;40(2):214–225.
  • Pillozzi S, Brizzi MF, Balzi M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia. 2002;16(9):1791–1798.
  • Crociani O, Zanieri F, Pillozzi S, et al. hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer. Sci Rep. 2013;3(1):3308.
  • Iorio J, Duranti C, Lottini T, et al. K(V)11.1 potassium channel and the Na(+)/H(+) Antiporter NHE1 modulate adhesion-dependent intracellular pH in colorectal cancer cells. Front Pharmacol. 2020;11:848.
  • Wu X, Hernandez-Enriquez B, Banas M, et al. Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation. J Biol Chem. 2013;288(6):4128–4134.
  • Hu X, Wei L, Taylor TM, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301(2):C362–72.
  • Sobko A, Peretz A, Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 1998;17(16):4723–4734.
  • Peretz A, Sobko A, Attali B. Tyrosine kinases modulate K + channel gating in mouse Schwann cells. J Physiol. 1999;519(2):373–384.
  • de Kovel CGF, Syrbe S, Brilstra EH, et al. Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes. JAMA Neurol. 2017;74(10):1228–1236.
  • Pal S, Hartnett KA, Nerbonne JM, et al. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 2003;23(12):4798–4802.
  • Aras MA, Aizenman E. Obligatory role of ASK1 in the apoptotic surge of K+ currents. Neurosci Lett. 2005;387(3):136–140.
  • Redman PT, He K, Hartnett KA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci U S A. 2007;104(9):3568–3573.
  • Redman PT, Hartnett KA, Aras MA, et al. Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J Physiol. 2009;587(18):4393–4404.
  • Tiran Z, Peretz A, Attali B, et al. Phosphorylation-dependent regulation of Kv2.1 channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon. J Biol Chem. 2003;278:17509–17514.
  • McCord MC, Aizenman E. Convergent Ca 2+ and Zn 2+ signaling regulates apoptotic Kv2.1 K + currents. Proc Natl Acad Sci U S A. 2013;110(34):13988–13993.
  • Cotella D, Hernandez-Enriquez B, Wu X, et al. Toxic role of K+ channel oxidation in mammalian brain. J Neurosci. 2012;32:4133–4144.
  • Cai SQ, Sesti F. Oxidation of a potassium channel causes progressive sensory function loss during aging. Nat Neurosci. 2009;12:611–617.
  • Cai SQ, Sesti F. A new mode of regulation of N-type inactivation in a Caenorhabditis elegans voltage-gated potassium channel. J Biol Chem. 2007;282(25):18597–18601.
  • Frazzini V, Guarnieri S, Bomba M, et al. Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer’s disease mouse model. Cell Death Dis. 2016;7(2):e2100.
  • Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39(3):409–421.
  • Yu W, Parakramaweera R, Teng S, et al. Oxidation of KCNB1 potassium channels causes neurotoxicity and cognitive impairment in a mouse model of traumatic brain injury. J Neurosci. 2016;36(43):11084–11096.
  • Bergmann A. Survival signaling goes BAD. Dev Cell. 2002;3(5):607–608.
  • Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med. 2003;7(3):249–257.
  • Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 2012;4(9):a011189.
  • Abdelhalim A, Barcos M, Block AW, et al. Remission of Philadelphia chromosome-positive central nervous system leukemia after dasatinib therapy. Leuk Lymphoma. 2007;48(5):1053–1056.
  • Porkka K, Koskenvesa P, Lundan T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–1012.
  • Alimena G, Breccia M, Latagliata R, et al. Dasatinib in the management of lymphoid blast crisis of Philadelphia-positive chronic myeloid leukemia with multiple extra-medullary and intracranial localizations. Leuk Res. 2009;33(8):e134–6.
  • Bhadri VA, Satharasinghe K, Sugo E, et al. Excellent response to dasatinib of childhood Philadelphia positive intracranial acute lymphoblastic leukaemia tumours. Br J Haematol. 2011;152(3):347–349.
  • Russwurm G, Heinsch M, Radkowski R, et al. Dasatinib induces complete remission in a patient with primary cerebral involvement of B-cell chronic lymphocytic leukemia failing chemotherapy. Blood. 2010;116(14):2617–2618.
  • Zhou HS, Dai M, Wei Y, et al. Isolated central nervous system relapse in patient with blast-crisis chronic myeloid leukemia in durable complete cytogenetic remission on dasatinib treatment: pharmacokinetics and ABL mutation analysis in cerebrospinal fluid. Leuk Lymphoma. 2013;54(7):1557–1559.
  • Nishimoto M, Nakamae H, Koh KR, et al. Dasatinib maintenance therapy after allogeneic hematopoietic stem cell transplantation for an isolated central nervous system blast crisis in chronic myelogenous leukemia. Acta Haematol. 2013;130(2):111–114.
  • Xu Z, Zheng M, Wu C, et al. The overwhelmingly positive response to Dasatinib of a patient with multiple blast crisis of chronic myeloid leukemia. Int J Clin Exp Med. 2015;8(1):1460–1466.
  • Lai SW, Huang TC, Chen JH, et al. Dasatinib as the salvage therapy for chronic myeloid leukemia with blast crisis and central nervous system involvement: a case report. Oncol Lett. 2015;9(4):1957–1961.
  • Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840.
  • Dhawan G, Combs CK. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J Neuroinflammation. 2012;9(1):117.
  • Dhawan G, Floden AM, Combs CK. Amyloid-beta oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging. 2012;33(10):2247–2261.
  • Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22(5):719–728.
  • Gentleman SM, Greenberg BD, Savage MJ, et al. A beta 42 is the predominant form of amyloid beta-protein in the brains of short-term survivors of head injury. Neuroreport. 1997;8(6):1519–1522.
  • Roberts GW, Gentleman SM, Lynch A, et al. beta A4 amyloid protein deposition in brain after head trauma. Lancet. 1991;338(8780):1422–1423.
  • Roberts GW, Gentleman SM, Lynch A, et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994;57(4):419–425.
  • Graham DI, Gentleman SM, Lynch A, et al. Distribution of beta-amyloid protein in the brain following severe head injury. Neuropathol Appl Neurobiol. 1995;21(1):27–34.
  • Ikonomovic MD, Uryu K, Abrahamson EE, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol. 2004;190(1):192–203.
  • Rodríguez-Rodríguez A, Egea-Guerrero JJ, Murillo-Cabezas F, et al. Oxidative stress in traumatic brain injury. Curr Med Chem. 2014;21(10):1201–1211.
  • Yeh CY, Bulas AM, Moutal A, et al. Targeting a potassium channel/syntaxin interaction ameliorates cell death in ischemic stroke. J Neurosci. 2017;37(23):5648–5658.
  • Cheng Y, Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10):1551.
  • Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17(11):676–691.
  • Bu X, Yin C, Zhang X, et al. LaSota strain expressing the rabies virus glycoprotein (rL-RVG) suppresses gastric cancer by inhibiting the alpha 7 nicotinic acetylcholine receptor (α7 nAChR)/Phosphoinositide 3-Kinase (PI3K)/AKT pathway. Med Sci Monit. 2019;25:5482–5492.
  • Molina-Arcas M, Samani A, Downward J. Drugging the undruggable: advances on RAS targeting in cancer. Genes (Basel). 2021;12(6):899.