2,354
Views
16
CrossRef citations to date
0
Altmetric
Report

Molecular basis for the antagonistic activity of an anti-CXCR4 antibody

, , , &
Pages 163-175 | Received 08 Jul 2015, Accepted 21 Oct 2015, Published online: 30 Dec 2015

References

  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272:872–77; PMID:8629022; http://dx.doi.org/10.1126/science.272.5263.872
  • Bleul CC, Farzan M, Choe H, Parolin C, ClarkLewis I, Sodroski J, Springer TA. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382:829–33; PMID:8752280; http://dx.doi.org/10.1038/382829a0
  • Loetscher M, Geiser T, O'Reilly T, Zwahlen R, Baggiolini M, Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 1994; 269:232–37; PMID:8276799
  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393:595–99; PMID:9634238; http://dx.doi.org/10.1038/31269
  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. PNAS USA 1998; 95:9448–53; PMID:9689100; http://dx.doi.org/10.1073/pnas.95.16.9448
  • McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213:442–56; PMID:10479460; http://dx.doi.org/10.1006/dbio.1999.9405
  • Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382:635–38; PMID:8757135; http://dx.doi.org/10.1038/382635a0
  • Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 1994; 12:593–633; PMID:8011292; http://dx.doi.org/10.1146/annurev.iy.12.040194.003113
  • Doranz BJ, Berson JF, Rucker J. Doms RW. Chemokine receptors as fusion cofactors for human immunodeficiency virus type 1 (HIV-1). Immunol Res 1997; 16:15–28; PMID:9048206; http://dx.doi.org/10.1007/BF02786321
  • Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 2000; 165:6590–98; PMID:11086103; http://dx.doi.org/10.4049/jimmunol.165.11.6590
  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410:50–56; PMID:11242036; http://dx.doi.org/10.1038/35065016
  • Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4:540–50; PMID:15229479; http://dx.doi.org/10.1038/nrc1388
  • Zlotnik A. New insights on the role of CXCR4 in cancer metastasis. J Pathol 2008; 215:211–13; PMID:18523970; http://dx.doi.org/10.1002/path.2350
  • Fulton AM. The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 2009; 11:125–31; PMID:19216844; http://dx.doi.org/10.1007/s11912-009-0019-1
  • Teicher BA. Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010; 16:2927–31; PMID:20484021; http://dx.doi.org/10.1158/1078-0432.CCR-09-2329
  • Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004; 14:171–79; PMID:15246052; http://dx.doi.org/10.1016/j.semcancer.2003.10.003
  • Tamamura H, Fujii N. The therapeutic potential of CXCR4 antagonists in the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Expert Opin. Ther. Targets 2005; 9:1267–82
  • Patrussi L, Baldari CT. The CXCL12/CXCR4 axis as a therapeutic target in cancer and HIV-1 infection. Curr Med Chem 2011; 18:497–512; PMID:21143114; http://dx.doi.org/10.2174/092986711794480159
  • Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2014; 352:36–53; PMID:24141062; http://dx.doi.org/10.1016/j.canlet.2013.10.006
  • Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, Cao F, Niekro W, Kempe T, Henning KA, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 2013; 19:357–66; PMID:23213054; http://dx.doi.org/10.1158/1078-0432.CCR-12-2333
  • Kamal A, Steiner P, Wang Y, Wetzel L, Mazzola A, Passino M, McDermott B, Huang K, Peng L, Rebelatto M, et al. (2013) AACR Meeting Abstracts abstract 5462.
  • Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186:1383–88; PMID:9334378; http://dx.doi.org/10.1084/jem.186.8.1383
  • De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov 2003; 2:581–87; PMID:12815382; http://dx.doi.org/10.1038/nrd1134
  • Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ, Allaway GP, Sakmar TP, Henson G, De Clercq E, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4:72–7; PMID:9427609; http://dx.doi.org/10.1038/nm0198-072
  • Matthys P, Hatse S, Vermeire K, Wuyts A, Bridger G, Henson GW, De Clercq E, Billiau A, Schols D. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 2001; 167:4686–92; PMID:11591799; http://dx.doi.org/10.4049/jimmunol.167.8.4686
  • Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 2002; 160:1353–60; PMID:11943720; http://dx.doi.org/10.1016/S0002-9440(10)62562-X
  • Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102:2728–30; PMID:12855591; http://dx.doi.org/10.1182/blood-2003-02-0663
  • Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ, et al. CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 2012; 14:709–18; PMID:22952424; http://dx.doi.org/10.1593/neo.12324
  • De Clercq E. Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol Ther 2010; 128:509–18; PMID:20826182; http://dx.doi.org/10.1016/j.pharmthera.2010.08.009
  • Kessans MR, Gatesman ML, Kockler DR. Plerixafor: a peripheral blood stem cell mobilizer. Pharmacotherapy 2010; 30:485–92; PMID:20411999; http://dx.doi.org/10.1592/phco.30.5.485
  • Choi HY, Yong CS, Yoo BK. Plerixafor for stem cell mobilization in patients with non-Hodgkin's lymphoma and multiple myeloma. Ann Pharmacother 2010; 44:117–26; PMID:20009003; http://dx.doi.org/10.1345/aph.1M380
  • Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, Yoshida N, Waki M, Matsumoto A, Yoshie O, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186:1389–93; PMID:9334379; http://dx.doi.org/10.1084/jem.186.8.1389
  • Arakaki R, Tamamura H, Premanathan M, Kanbara K, Ramanan S, Mochizuki K, Baba M, Fujii N, Nakashima H. T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 1999; 73:1719–23; PMID:9882387
  • Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N, Otaka A, Fujii N. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 2003; 550:79–83; PMID:12935890; http://dx.doi.org/10.1016/S0014-5793(03)00824-X
  • Tamamura H, Hiramatsu K, Mizumoto M, Ueda S, Kusano S, Terakubo S, Akamatsu M, Yamamoto N, Trent JO, Wang ZP, et al. Enhancement of the T140-based pharmacophores leads to the development of more potent and bio-stable CXCR4 antagonists. Org Biomol Chem 2003; 1:3663–69; PMID:14649897; http://dx.doi.org/10.1039/b306613b
  • Tamamura H, Esaka A, Ogawa T, Araki T, Ueda S, Wang Z, Trent JO, Tsutsumi H, Masuno H, Nakashima H, et al. Structure-activity relationship studies on CXCR4 antagonists having cyclic pentapeptide scaffolds. Org Biomol Chem 2005; 3:4392–94; PMID:16327900; http://dx.doi.org/10.1039/b513145f
  • Rosenkilde MM, Gerlach LO, Jakobsen JS, Skerlj RT, Bridger GJ, Schwartz TW. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 2004; 279:3033–41; PMID:14585837; http://dx.doi.org/10.1074/jbc.M309546200
  • Tamamura H, Xu Y, Hattori T, Zhang X, Arakaki R, Kanbara K, Omagari A, Otaka A, Ibuka T, Yamamoto N, et al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem Biophys Res Commun 1998; 253:877–82; PMID:9918823; http://dx.doi.org/10.1006/bbrc.1998.9871
  • Kawatkar SP, Yan M, Gevariya H, Lim MY, Eisold S, Zhu X, Huang Z, An J. Computational analysis of the structural mechanism of inhibition of chemokine receptor CXCR4 by small molecule antagonists. Exp Biol Med (Maywood) 2011; 236:844–50; PMID:21697335; http://dx.doi.org/10.1258/ebm.2011.010345
  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010; 330:1066–71; PMID:20929726; http://dx.doi.org/10.1126/science.1194396
  • Yoshikawa Y, Kobayashi K, Oishi S, Fujii N, Furuya T. Molecular modeling study of cyclic pentapeptide CXCR4 antagonists: new insight into CXCR4-FC131 interactions. Bioorg Med Chem Lett 2012; 22:2146–50; PMID:22365757; http://dx.doi.org/10.1016/j.bmcl.2012.01.134
  • Brelot A, Heveker N, Montes M, Alizon M. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 2000; 275:23736–44; PMID:10825158; http://dx.doi.org/10.1074/jbc.M000776200
  • Brelot A, Heveker N, Adema K, Hosie MJ, Willett B, Alizon M. Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J Virol 1999; 73:2576–86; PMID:10074102
  • Bertolini F, Dell'Agnola C, Mancuso P, Rabascio C, Burlini A, Monestiroli S, Gobbi A, Pruneri G, Martinelli G. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res 2002; 62:3106–12; PMID:12036921
  • Engl T, Relja B, Marian D, Blumenberg C, Muller I, Beecken WD, Jones J, Ringel EM, Bereiter-Hahn J, Jonas D, et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 2006; 8:290–301; PMID:16756721; http://dx.doi.org/10.1593/neo.05694
  • Gelmini S, Mangoni M, Castiglione F, Beltrami C, Pieralli A, Andersson KL, Fambrini M, Taddei GL, Serio M, Orlando C. The CXCR4/CXCL12 axis in endometrial cancer. Clin Exp Metastasis 2009; 26:261–68; http://dx.doi.org/10.1007/s10585-009-9240-4
  • Cheng Z, Zhou S, Wang X, Xie F, Wu H, Liu G, Wang Q, Chen Y, Hu Y, Lu B, et al. Characterization and application of two novel monoclonal antibodies against human CXCR4: cell proliferation and migration regulation for glioma cell line in vitro by CXCR4/SDF-1alpha signal. Hybridoma (Larchmt) 2009; 8:33–41; http://dx.doi.org/10.1089/hyb.2008.0069
  • Tanaka R, Yoshida A, Murakami T, Baba E, Lichtenfeld J, Omori T, Kimura T, Tsurutani N, Fujii N, Wang ZX, et al. Unique monoclonal antibody recognizing the third extracellular loop of CXCR4 induces lymphocyte agglutination and enhances human immunodeficiency virus type 1-mediated syncytium formation and productive infection. J Virol 2001; 75:11534–43; PMID:11689635; http://dx.doi.org/10.1128/JVI.75.23.11534-11543.2001
  • Carnec X, Quan L, Olson WC, Hazan U, Dragic T. Anti-CXCR4 monoclonal antibodies recognizing overlapping epitopes differ significantly in their ability to inhibit entry of human immunodeficiency virus type 1. J Virol 2005; 79:1930–33; PMID:15650218; http://dx.doi.org/10.1128/JVI.79.3.1930-1933.2005
  • Xu C, Sui J, Tao H, Zhu Q, Marasco WA. Human anti-CXCR4 antibodies undergo VH replacement, exhibit functional V-region sulfation, and define CXCR4 antigenic heterogeneity. J Immunol 2007; 179:2408–18; PMID:17675502; http://dx.doi.org/10.4049/jimmunol.179.4.2408
  • Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest. U.S. Public Health Service, National Institutes of Health, Washington, DC 1997.
  • Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, Schroeder HW, Kirkham PM. Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol 2003; 334:733–49; PMID:14636599; http://dx.doi.org/10.1016/j.jmb.2003.10.007
  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, et al. Conformations of immunoglobulin hypervariable regions. Nature 1989; 342:877–83; PMID:2687698; http://dx.doi.org/10.1038/342877a0
  • Chothia C, Lesk AM, Gherardi E, Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. Structural repertoire of the human VH segments. J Mol Biol 1992; 227:799–817; PMID:1404389; http://dx.doi.org/10.1016/0022-2836(92)90224-8
  • Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 1997; 273:927–48; PMID:9367782; http://dx.doi.org/10.1006/jmbi.1997.1354
  • Foote J, Winter G. Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops. J Mol Biol 1992; 224:487–99; PMID:1560463; http://dx.doi.org/10.1016/0022-2836(92)91010-M
  • Forster R, Kremmer E, Schubel A, Breitfeld D, Kleinschmidt A, Nerl C, Bernhardt G, Lipp M. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J Immunol 1998; 160:1522–31; PMID:9570576
  • Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 2001; 276:14153–60; PMID:11154697
  • Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold M, Sunshine MJ, Littman DR, Kuo CJ, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203:2201–13; PMID:16940167; http://dx.doi.org/10.1084/jem.20052144
  • Almagro JC, Beavers MP, Hernandez-Guzman F, Maier J, Shaulsky J, Butenhof K, Labute P, Thorsteinson N, Kelly K, Teplyakov A, et al. Antibody modeling assessment. Proteins 2011; 79:3050–66; PMID:21935986; http://dx.doi.org/10.1002/prot.23130
  • Shirai H, Kidera A, Nakamura H. H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett 1999; 455:188–97; PMID:10428499; http://dx.doi.org/10.1016/S0014-5793(99)00821-2
  • Kuroda D, Shirai H, Kobori M, Nakamura H. Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins 2008; 73:608–20; PMID:18473362; http://dx.doi.org/10.1002/prot.22087
  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J Comp Chem 1983; 4:187–217; http://dx.doi.org/10.1002/jcc.540040211
  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al. CHARMM: The Biomolecular Simulation Program. J Comp Chem 2009; 30:1545–1614; http://dx.doi.org/10.1002/jcc.21287
  • Chen R, Li L, Weng Z. ZDOCK: An Initial-stage Protein-Docking algorithm. Proteins 2003; 52: 80–7; PMID:12784371; http://dx.doi.org/10.1002/prot.10389
  • Li L, Chen R, Weng Z. RDOCK: refinement of rigid-body protein docking predictions. Proteins 2003; 53:693–707; PMID:14579360; http://dx.doi.org/10.1002/prot.10460
  • Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 1997; 16:6996–7007; PMID:9384579; http://dx.doi.org/10.1093/emboj/16.23.6996
  • Dealwis C, Fernandez EJ, Thompson DA, Simon RJ, Siani MA, Lolis E. Crystal structure of chemically synthesized ; N33A stromal cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor. PNAS USA 1998; 95:6941–46; PMID:9618518; http://dx.doi.org/10.1073/pnas.95.12.6941
  • Gupta SK, Pillarisetti K, Thomas RA, Aiyar N. Pharmacological evidence for complex and multiple site interaction of CXCR4 with SDF-1alpha: implications for development of selective CXCR4 antagonists. Immunol Lett 2001; 78:29–34; PMID:11470148; http://dx.doi.org/10.1016/S0165-2478(01)00228-0
  • Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, Baggiolini M, Sykes BD. Structure-activity relationships of chemokines. J Leukoc Biol 1995; 57:703–11; PMID:7759949
  • Wells TN, Power CA, Lusti-Narasimhan M, Hoogewerf AJ, Cooke RM, Chung CW, Peitsch MC, Proudfoot AE. Selectivity and antagonism of chemokine receptors. J Leukoc Biol 1996; 59:53–60; PMID:8558067
  • Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, Abagyan R, Handel TM. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: Molecular modeling and experimental validation. PNAS 2014; 111:E5363–E5372; PMID:25468967; http://dx.doi.org/10.1073/pnas.1417037111
  • Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 2015; 347:1117–22; PMID:25612609; http://dx.doi.org/10.1126/science.1261064
  • Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, De Vrieze S, Serruys B, Ulrichts H, Vandevelde W, et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. PNAS 2010; 107:20565–70; http://dx.doi.org/10.1073/pnas.1012865107
  • BouHamdan M, Strayer DS, Wei D, Mukhtar M, Duan LX, Hoxie J, Pomerantz RJ. Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4. Gene Ther 2001; 8:408–18; PMID:11313818; http://dx.doi.org/10.1038/sj.gt.3301411
  • Baribaud F, Edwards TG, Sharron M, Brelot A, Heveker N, Price K, Mortari F, Alizon M, Tsang M, Doms RW. Antigenically distinct conformations of CXCR4. J Virol 2001; 75:8957–67; PMID:11533159; http://dx.doi.org/10.1128/JVI.75.19.8957-8967.2001
  • Huskens D, Princen K, Schreiber M, Schols D. The role of N-glycosylation sites on the CXCR4 receptor for CXCL-12 binding and signaling and X4 HIV-1 viral infectivity. Virology 2007; 363:280–7; PMID:17331556; http://dx.doi.org/10.1016/j.virol.2007.01.031
  • Chabot DJ, Chen H, Dimitrov DS, Broder CC. N-Linked Glycosylation of CXCR4 Masks Coreceptor Function for CCR5-Dependent Human Immunodeficiency Virus Type 1 Isolates. J Virol 2000; 74:4404–13; PMID:10756055; http://dx.doi.org/10.1128/JVI.74.9.4404-4413.2000
  • Milligan G. Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol 2003; 64:1271–6; PMID:14645655; http://dx.doi.org/10.1124/mol.64.6.1271
  • Dimasi N, Gao C, Fleming R, Woods RM, Yao XT, Shirinian L, Kiener PA, Wu H. The design and characterization of oligospecific antibodies for simultaneous targeting of multiple disease mediators. J Mol Biol 2009; 393:672–92; PMID:19699208; http://dx.doi.org/10.1016/j.jmb.2009.08.032
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28:235–42; http://dx.doi.org/10.1093/nar/28.1.235