7,752
Views
78
CrossRef citations to date
0
Altmetric
Reports

Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action

, , , , , , & show all
Pages 454-467 | Received 13 Nov 2015, Accepted 12 Jan 2016, Published online: 16 Mar 2016

References

  • Zimmermann H. 5′-nucleotidase: Molecular structure and functional aspects. Biochem J 1992; 285 (Pt 2):345–65; PMID:1637327; http://dx.doi.org/10.1042/bj2850345
  • Sullivan JM, Alpers JB. In vitro regulation of rat heart 5′-nucleotidase by adenine nucleotides and magnesium. J Biol Chem 1971; 246:3057–63; PMID:4324346
  • Kumar V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: Where to go? Purinergic Signal 2013; 9:145–65; PMID:23271562; http://dx.doi.org/10.1007/s11302-012-9349-9
  • Spychala J. Tumor-promoting functions of adenosine. Pharmacol Ther 2000; 87:161–73; PMID:11007998; http://dx.doi.org/10.1016/S0163-7258(00)00053-X
  • Xu S, Shao QQ, Sun JT, Yang N, Xie Q, Wang DH, Huang QB, Huang B, Wang XY, Li XG, et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol 2013; 15:1160–72; PMID:23737488; http://dx.doi.org/10.1093/neuonc/not067
  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65; PMID:17502665; http://dx.doi.org/10.1084/jem.20062512
  • Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 1997; 90:1600–10; PMID:9269779
  • Eppell BA, Newell AM, Brown EJ. Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. implications for regulation of phagocytosis. J Immunol 1989; 143:4141–5; PMID:2556476
  • Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwarzschild MA, et al. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 2002; 160:2231–44; PMID:12057925; http://dx.doi.org/10.1016/S0002-9440(10)61170-4
  • Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell 2007; 18:14–23; PMID:17065555; http://dx.doi.org/10.1091/mbc.E06-07-0596
  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31; PMID:18559975; http://dx.doi.org/10.1182/blood-2008-02-136325
  • Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: A potent suppressor of antitumor immune responses. Trends Immunol 2012; 33:231–7; PMID:22487321; http://dx.doi.org/10.1016/j.it.2012.02.009
  • Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57:2602–5; PMID:9205063
  • Stagg J, Beavis PA, Divisekera U, Liu MC, Moller A, Darcy PK, Smyth MJ. CD73-deficient mice are resistant to carcinogenesis. Cancer Res 2012; 72:2190–6; PMID:22396496; http://dx.doi.org/10.1158/0008-5472.CAN-12-0420
  • Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z, Yin L. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin Exp Metastasis 2007; 24:439–48; PMID:17587186; http://dx.doi.org/10.1007/s10585-007-9081-y
  • Zhi X, Wang Y, Zhou X, Yu J, Jian R, Tang S, Yin L, Zhou P. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci 2010; 101:2561–9; PMID:20874842; http://dx.doi.org/10.1111/j.1349-7006.2010.01733.x
  • Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, Farias PF, Wink MR, Delgado-Canedo A, Battastini AM. The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 2008; 319:61–8; PMID:18636315; http://dx.doi.org/10.1007/s11010-008-9877-3
  • Wang L, Zhou X, Zhou T, Ma D, Chen S, Zhi X, Yin L, Shao Z, Ou Z, Zhou P. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol 2008; 134:365–72; PMID:17671792; http://dx.doi.org/10.1007/s00432-007-0292-z
  • Naito Y, Lowenstein JM. 5′-nucleotidase from rat heart. Biochemistry 1981; 20:5188–94; PMID:6271180; http://dx.doi.org/10.1021/bi00521a014
  • Airas L, Niemela J, Salmi M, Puurunen T, Smith DJ, Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J Cell Biol 1997; 136:421–31; PMID:9015312; http://dx.doi.org/10.1083/jcb.136.2.421
  • Knapp K, Zebisch M, Pippel J, El-Tayeb A, Muller CE, Strater N. Crystal structure of the human ecto-5′-nucleotidase (CD73): Insights into the regulation of purinergic signaling. Structure 2012; 20:2161–73; PMID:23142347; http://dx.doi.org/10.1016/j.str.2012.10.001
  • Knofel T, Strater N. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5′-nucleotidase based on crystal structures. J Mol Biol 2001; 309:239–54; PMID:11491293; http://dx.doi.org/10.1006/jmbi.2001.4656
  • Schultz-Heienbrok R, Maier T, Strater N. A large hinge bending domain rotation is necessary for the catalytic function of escherichia coli 5′-nucleotidase. Biochemistry 2005; 44:2244–52; PMID:15709736; http://dx.doi.org/10.1021/bi047989c
  • Knofel T, Strater N. E. coli 5′-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. J Mol Biol 2001; 309:255–66; PMID:11491294; http://dx.doi.org/10.1006/jmbi.2001.4657
  • Ipata PL. Studies on the inhibition by nucleoside-triphosphates of sheep brain 5-nucleotidase. Biochem Biophys Res Commun 1967; 27:337–43; PMID:6035114; http://dx.doi.org/10.1016/S0006-291X(67)80103-7
  • Burger RM, Lowenstein JM. Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine. J Biol Chem 1970; 245:6274–80; PMID:4320834
  • Iqbal J, Saeed A, Raza R, Matin A, Hameed A, Furtmann N, Lecka J, Sevigny J, Bajorath J. Identification of sulfonic acids as efficient ecto-5′-nucleotidase inhibitors. Eur J Med Chem 2013; 70:685–91; PMID:24215819; http://dx.doi.org/10.1016/j.ejmech.2013.10.053
  • Raza R, Saeed A, Lecka J, Sevigny J, Iqbal J. Identification of small molecule sulfonic acids as ecto-5′-nucleotidase inhibitors. Med Chem 2012; 8:1133–9; PMID:22741787; http://dx.doi.org/10.2174/1573406411208061133
  • Braganhol E, Tamajusuku AS, Bernardi A, Wink MR, Battastini AM. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim Biophys Acta 2007; 1770:1352–9; PMID:17643826; http://dx.doi.org/10.1016/j.bbagen.2007.06.003
  • Gagliardi AR, Kassack M, Kreimeyer A, Muller G, Nickel P, Collins DC. Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother Pharmacol 1998; 41:117–24; PMID:9443624; http://dx.doi.org/10.1007/s002800050717
  • Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 2010; 107:1547–52; PMID:20080644; http://dx.doi.org/10.1073/pnas.0908801107
  • Rust S, Guillard S, Sachsenmeier K, Hay C, Davidson M, Karlsson A, Karlsson R, Brand E, Lowne D, Elvin J, et al. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type. Mol Cancer 2013; 12:11:4598-12-11; PMID:23406016; http;//dx.doi.org/10.1186/1476-4598-12-11
  • Terp MG, Olesen KA, Arnspang EC, Lund RR, Lagerholm BC, Ditzel HJ, Leth-Larsen R. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J Immunol 2013; 191:4165–73; PMID:24043904; http://dx.doi.org/10.4049/jimmunol.1301274
  • Allard B, Turcotte M, Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin Ther Targets 2014; 18:863–81; PMID:24798880; http://dx.doi.org/10.1517/14728222.2014.915315
  • Sachsenmeier KF, Hay C, Brand E, Clarke L, Rosenthal K, Guillard S, Rust S, Minter R, Hollingsworth R. Development of a novel ectonucleotidase assay suitable for high-throughput screening. J Biomol Screen 2012; 17:993–8; PMID:22522649; http://dx.doi.org/10.1177/1087057112443987
  • Hay C, Sult E, Huang Q, Hammond S, Mulgrew K, McGlinchey K, Fuhrmann S, Rothstein R, Poon E, Stewart R, Hollingsworth R, Sachsenmeier K. MEDI9447: enhancing anti-tumor immunity by targeting CD73 In the tumor microenvironment. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl): Abstract nr 285.
  • Burger RM, Lowenstein JM. 5′-nucleotidase from smooth muscle of small intestine and from brain. inhibition of nucleotides. Biochemistry 1975; 14:2362–6; PMID:1169962; http://dx.doi.org/10.1021/bi00682a014
  • Parker CH, Morgan CR, Rand KD, Engen JR, Jorgenson JW, Stafford DW. A conformational investigation of propeptide binding to the integral membrane protein gamma-glutamyl carboxylase using nanodisc hydrogen exchange mass spectrometry. Biochemistry 2014; 53:1511–20; PMID:24512177; http://dx.doi.org/10.1021/bi401536m
  • Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: Methodology and applications. Drug Discov Today 2014; 19:95–102; PMID:23928097; http://dx.doi.org/10.1016/j.drudis.2013.07.019
  • Marcsisin SR, Narute PS, Emert-Sedlak LA, Kloczewiak M, Smithgall TE, Engen JR. On the solution conformation and dynamics of the HIV-1 viral infectivity factor. J Mol Biol 2011; 410:1008–22; PMID:21763503; http://dx.doi.org/10.1016/j.jmb.2011.04.053
  • Oganesyan V, Peng L, Damschroder MM, Cheng L, Sadowska A, Tkaczyk C, Sellman BR, Wu H, Dall'Acqua WF. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J Biol Chem 2014; 289:29874–80; PMID:25210036; http://dx.doi.org/10.1074/jbc.M114.601328
  • Peng L, Oganesyan V, Wu H, Dall'Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-alpha receptor 1 antibody. MAbs 2015; 7:428–39; PMID:25606664; http://dx.doi.org/10.1080/19420862.2015.1007810
  • Charrie A, Charriere G, Guerrier A. Hook effect in immunometric assays for prostate-specific antigen. Clin Chem 1995; 41:480–1; PMID:7533675
  • Klemens MR, Sherman WR, Holmberg NJ, Ruedi JM, Low MG, Thompson LF. Characterization of soluble vs membrane-bound human placental 5′-nucleotidase. Biochem Biophys Res Commun 1990; 172:1371–7; PMID:2173922; http://dx.doi.org/10.1016/0006-291X(90)91601-N
  • Piec G, Le Hir M. The soluble ‘low-km’ 5′-nucleotidase of rat kidney represents solubilized ecto-5′-nucleotidase. Biochem J 1991; 273(Pt 2):409–13; PMID:1846740; http://dx.doi.org/10.1042/bj2730409
  • Brinkley BR, Beall PT, Wible LJ, Mace ML, Turner DS, Cailleau RM. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Res 1980; 40:3118–29; PMID:7000337
  • Lamba V, Ghosh I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr Pharm Des 2012; 18:2936–45; PMID:22571662; http://dx.doi.org/10.2174/138161212800672813
  • Grover AK. Use of allosteric targets in the discovery of safer drugs. Med Princ Pract 2013; 22:418–26; PMID:23711993; http://dx.doi.org/10.1159/000350417
  • Baqi Y, Weyler S, Iqbal J, Zimmermann H, Muller CE. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 2009; 5:91–106; PMID:18528783; http://dx.doi.org/10.1007/s11302-008-9103-5
  • Evans WH, Gurd JW. Properties of a 5′-nucleotidase purified from mouse liver plasma membranes. Biochem J 1973; 133:189–99; PMID:4721620; http://dx.doi.org/10.1042/bj1330189
  • Goding JW. Ecto-enzymes: Physiology meets pathology. J Leukoc Biol 2000; 67:285–311; PMID:10733089
  • Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005; 5:760–71; PMID:16200079; http://dx.doi.org/10.1038/nri1705
  • Groves M, Lane S, Douthwaite J, Lowne D, Rees DG, Edwards B, Jackson RH. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 2006; 313:129–39; PMID:16730741; http://dx.doi.org/10.1016/j.jim.2006.04.002
  • Xiao X, Chen Y, Mugabe S, Gao C, Tkaczyk C, Mazor Y, Pavlik P, Wu H, Dall'Acqua W, Chowdhury PS. A novel dual expression platform for high throughput functional screening of phage libraries in product like format. PLoS One 2015; 10:e0140691; PMID:26468955; http://dx.doi.org/10.1371/journal.pone.0140691
  • Oganesyan V, Gao C, Shirinian L, Wu H, Dall'Acqua WF. Structural characterization of a human fc fragment engineered for lack of effector functions. Acta Crystallogr D Biol Crystallogr 2008; 64:700–4; PMID:18560159; http://dx.doi.org/10.1107/S0907444908007877
  • Houde D, Berkowitz SA, Engen JR. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 2011; 100:2071–86; PMID:21491437; http://dx.doi.org/10.1002/jps.22432
  • Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 1992; 89:10915–9; PMID:1438297; http://dx.doi.org/10.1073/pnas.89.22.10915