5,948
Views
27
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates

, &
Pages 756-766 | Received 01 Mar 2017, Accepted 21 Apr 2017, Published online: 08 Jun 2017

References

  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs 2015; 7(1):9-14; PMID:25529996; https://doi.org/10.4161/19420862.2015.989042
  • Boehm MK, Woof JM, Kerr MA, Perkins SJ. The fab and fc fragments of IgA1 exhibit a different arrangement from that in IgG: A study by X-ray and neutron solution scattering and homology modelling. J Mol Biol 1999; 286(5):1421-47; PMID:10064707; https://doi.org/10.1006/jmbi.1998.2556
  • Ramsland PA, Hutchinson AT, Carter PJ. Therapeutic antibodies: Discovery, design and deployment. Mol Immunol 2015; 67(2):1-3; PMID:25990602; https://doi.org/10.1016/j.molimm.2015.05.004
  • Ueda T. Next-generation optimized biotherapeutics - A review and preclinical study. Biochim Biophys Acta 2014; 1844(11):2053-7; PMID:24954894; https://doi.org/10.1016/j.bbapap.2014.06.008
  • Suresh S, Fisher C, Ayyub H, Premawardhena A, Allen A, Perera A, Bandara D, Olivieri N, Weatherall D. Alpha thalassaemia and extended alpha globin genes in Sri Lanka. Blood Cells Mol Dis 2013; 50(2):93-8; PMID:23138098; https://doi.org/10.1016/j.bcmd.2012.10.001
  • Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem 2012; 3(4):73-97; PMID:22558487; https://doi.org/10.4331/wjbc.v3.i4.73
  • Bumbaca D, Wong A, Drake E, Reyes AE, Lin BC, Stephan JP, Desnoyers L, Shen BQ, Dennis MS. Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs 2011; 3(4):376-86; PMID:21540647; https://doi.org/10.4161/mabs.3.4.15786
  • Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK, White WI, Young JF, Kiener PA. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 2007; 368(3):652-65; PMID:17362988; https://doi.org/10.1016/j.jmb.2007.02.024
  • Vugmeyster Y, Szklut P, Wensel D, Ross J, Xu X, Awwad M, Gill D, Tchistiakov L, Warner G. Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, Anti-Abeta Ab2, in nonclinical species. Pharm Res 2011; 28(7):1696-706; PMID:21424161; https://doi.org/10.1007/s11095-011-0405-x
  • Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 2013; 8(2):e57479; PMID:23468998; https://doi.org/10.1371/journal.pone.0057479
  • Hötzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, Lutman J, Sibia R, Chan P, Bumbaca D, et al. A strategy for risk mitigation of antibodies with fast clearance. MAbs 2012; 4(6):753-60; PMID:23778268; https://doi.org/10.4161/mabs.22189
  • Vugmeyster Y, Guay H, Szklut P, Qian MD, Jin M, Widom A, Spaulding V, Bennett F, Lowe L, Andreyeva T, et al. In vitro potency, pharmacokinetic profiles, and pharmacological activity of optimized anti-IL-21R antibodies in a mouse model of lupus. MAbs 2010; 2(3):335-46; PMID:20424514; https://doi.org/10.4161/mabs.2.3.11850
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 2010; 23(5):385-92; PMID:20159773; https://doi.org/10.1093/protein/gzq009
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, et al. In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A 2014; 111(52):18601-6; PMID:25512516; https://doi.org/10.1073/pnas.1421779112
  • Yadav DB, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, et al. Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics. J Biol Chem 2015; 290(50):29732-41; PMID:26491012; https://doi.org/10.1074/jbc.M115.692434
  • Hötzel I, Chiang V, Diao J, Pantua H, Maun HR, Kapadia SB. Efficient production of antibodies against a mammalian integral membrane protein by phage display. Protein Eng Des Sel 2011; 24(9):679-89; PMID:21810920; https://doi.org/10.1093/protein/gzr039
  • Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R. Production, characterization and pharmacokinetic properties of antibodies with N-linked Mannose-5 glycans. MAbs 2012; 4(4):475-87; PMID:22699308; https://doi.org/10.4161/mabs.20737
  • Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52(2):83-124; PMID:23299465; https://doi.org/10.1007/s40262-012-0027-4
  • Shi S. Biologics: An update and challenge of their pharmacokinetics. Curr Drug Metab 2014; 15(3):271-90; PMID:24745789; https://doi.org/10.2174/138920021503140412212905
  • Kuo TT, Baker K, Yoshida M, Qiao SW, Aveson VG, Lencer WI, Blumberg RS. Neonatal Fc receptor: From immunity to therapeutics. J Clin Immunol 2010; 30(6):777-89; PMID:20886282; https://doi.org/10.1007/s10875-010-9468-4
  • Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 2015; 104(6):1885-98; PMID:25821140; https://doi.org/10.1002/jps.24430
  • Yang X, Xu W, Dukleska S, Benchaar S, Mengisen S, Antochshuk V, Cheung J, Mann L, Babadjanova Z, Rowand J, et al. Developability studies before initiation of process development: Improving manufacturability of monoclonal antibodies. MAbs 2013; 5(5):787-94; PMID:23883920; https://doi.org/10.4161/mabs.25269
  • Sievers SA, Scharf L, West AP, Bjorkman PJ. Antibody engineering for increased potency, breadth and half-life. Curr Opin HIV AIDS 2015; 10(3):151-9; PMID:25760931; https://doi.org/10.1097/COH.0000000000000148
  • Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J, et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs 2013; 5(4):576-86; PMID:23765230; https://doi.org/10.4161/mabs.24981
  • Kelly RL, Yu Y, Sun T, Caffry I, Lynaugh H, Brown M, Jain T, Xu Y, Wittrup KD. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. MAbs 2016; 8(7):1269-75; PMID:27610650; https://doi.org/10.1080/19420862.2016.1208330
  • Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vásquez M, Wittrup KD, et al. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs 2015; 7(4):770-7; PMID:26047159; https://doi.org/10.1080/19420862.2015.1043503
  • Zhou J, Mateos F, Ober RJ, Sally Ward E. Conferring the binding properties of the mouse MHC class I-related receptor, FcRn, onto the human ortholog by sequential rounds of site-directed mutagenesis. J Mol Biol 2005; 345(5):1071-81; PMID:15644205; https://doi.org/10.1016/j.jmb.2004.11.014
  • Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. Antibody structure, prediction and redesign. Biophys Chem 1997; 68(1-3):9-16; PMID:9468606; https://doi.org/10.1016/S0301-4622(96)02266-1
  • Pedotti M, Simonelli L, Livoti E, Varani L. Computational docking of antibody-antigen complexes, opportunities and pitfalls illustrated by influenza hemagglutinin. Int J Mol Sci 2011; 12(1):226-51; PMID:21339984; https://doi.org/10.3390/ijms12010226
  • Brandt JP, Patapoff TW, Aragon SR. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody. Biophys J 2010; 99(3):905-13; PMID:20682269; https://doi.org/10.1016/j.bpj.2010.05.003
  • Schoch A, Kettenberger H, Mundigl O, Winter G, Engert J, Heinrich J, Emrich T. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc Natl Acad Sci U S A 2015; 112(19):5997-6002; PMID:25918417; https://doi.org/10.1073/pnas.1408766112
  • Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, Yeilding N, Davis HM, Zhou H. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 2009; 49(2):162-75; PMID:19179295; https://doi.org/10.1177/0091270008329556
  • Gandhi M, Alwawi E, Gordon KB. Anti-p40 antibodies ustekinumab and briakinumab: Blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. Semin Cutan Med Surg 2010; 29(1):48-52; PMID:20430307; https://doi.org/10.1016/j.sder.2010.02.001
  • Lima XT, Abuabara K, Kimball AB, Lima HC. Briakinumab. Expert Opin Biol Ther 2009; 9(8):1107-13; PMID:19569977; https://doi.org/10.1517/14712590903092188
  • Weger W. Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents. Br J Pharmacol 2010; 160(4):810-20; PMID:20590580; https://doi.org/10.1111/j.1476-5381.2010.00702.x
  • Gurbaxani B, Dostalek M, Gardner I. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Mol Immunol 2013; 56(4):660-74; PMID:23917469; https://doi.org/10.1016/j.molimm.2013.05.008
  • Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pl reduces non-specific binding and improves the pharmacokinetics. MAbs 2015; 7(3):483-93; PMID:25695748; https://doi.org/10.1080/19420862.2015.1016696
  • Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, Wroblewski VJ. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Drug Metab Dispos 2012; 40(8):1545-55; PMID:22584253; https://doi.org/10.1124/dmd.112.045864
  • Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68:729-77; PMID:10872465; https://doi.org/10.1146/annurev.biochem.68.1.729
  • Fuster MM, Esko JD. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5(7):526-42; PMID:16069816; https://doi.org/10.1038/nrc1649
  • Zhang Y, Lukacova V, Bartus V, Nie X, Sun G, Manivannan E, Ghorpade SR, Jin X, Manyem S, Sibi MP, et al. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis. Chem Biol Drug Des 2008; 72(4):237-48; PMID:18844670; https://doi.org/10.1111/j.1747-0285.2008.00710.x
  • Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, Bobrowicz P, Vásquez M, et al. Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: A FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 2013; 26(10):663-70; PMID:24046438; https://doi.org/10.1093/protein/gzt047
  • Lueking A, Beator J, Patz E, Müllner S, Mehes G, Amersdorfer P. Determination and validation of off-target activities of anti-CD44 variant 6 antibodies using protein biochips and tissue microarrays. Biotechniques 2008; 45(4):1-6; PMID:18855764; https://doi.org/10.2144/000112898
  • Frese K, Eisenmann M, Ostendorp R, Brocks B, Pabst S. An automated immunoassay for early specificity profiling of antibodies. MAbs 2013; 5(2):279-87; PMID:23412646; https://doi.org/10.4161/mabs.23539
  • Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos 2011; 39(9):1469-77; PMID:21610128; https://doi.org/10.1124/dmd.111.039453
  • Yeung YA, Wu X, Reyes AE, Vernes JM, Lien S, Lowe J, Maia M, Forrest WF, Meng YG, Damico LA, et al. A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life. Cancer Res 2010; 70(8):3269-77; PMID:20354184; https://doi.org/10.1158/0008-5472.CAN-09-4580
  • Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 1997; 15(7):637-40; PMID:9219265; https://doi.org/10.1038/nbt0797-637
  • Medesan C, Cianga P, Mummert M, Stanescu D, Ghetie V, Ward ES. Comparative studies of rat IgG to further delineate the Fc:FcRn interaction site. Eur J Immunol 1998; 28(7):2092-100; PMID:9692877; https://doi.org/10.1002/(SICI)1521-4141(199807)28:07%3c2092::AID-IMMU2092%3e3.0.CO;2-E
  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance: Impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem 2007; 282(3):1709-17; PMID:17135257; https://doi.org/10.1074/jbc.M607161200
  • Dall'Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 2006; 281(33):23514-24; PMID:16793771; https://doi.org/10.1074/jbc.M604292200
  • Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. J Immunol 2006; 176(1):346-56; PMID:16365427; https://doi.org/10.4049/jimmunol.176.1.346
  • Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, Keller S, Tang MT, Tso JY, Vásquez M, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 2004; 279(8):6213-6; PMID:14699147; https://doi.org/10.1074/jbc.C300470200
  • Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. Engineering human IgG1 affinity to human neonatal Fc receptor: Impact of affinity improvement on pharmacokinetics in primates. J Immunol 2009; 182(12):7663-71; PMID:19494290; https://doi.org/10.4049/jimmunol.0804182
  • Souders CA, Nelson SC, Wang Y, Crowleya AR, Klempner MS, Thomas W. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life. MAbs 2015; 7(5):912-21; PMID:26018774; https://doi.org/10.1080/19420862.2015.1054585
  • Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K, et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 2015; 7(2):331-43; PMID:25658443; https://doi.org/10.1080/19420862.2015.1008353
  • Walters BT, Jensen PF, Larraillet V, Lin K, Patapoff T, Schlothauer T, Rand KD, Zhang J. Conformational destabilization of immunoglobulin G increases the low pH binding affinity with the neonatal Fc receptor. J Biol Chem 2016; 291(4):1817-25; PMID:26627822; https://doi.org/10.1074/jbc.M115.691568
  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Jiang W, Wroblewski VJ. Humanized IgG1 variants with differential binding properties to the neonatal Fc receptor: Relationship to pharmacokinetics in mice and primates. Drug Metab Dispos 2007; 35(1):86-94; PMID:17050651; https://doi.org/10.1124/dmd.106.011734
  • Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C; European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 2001; 21(1):15-23; PMID:11180276; https://doi.org/10.1002/jat.727
  • Rahavendran SV, Vekich S, Skor H, Batugo M, Nguyen L, Shetty B, Shen Z. Discovery pharmacokinetic studies in mice using serial microsampling, dried blood spots and microbore LC-MS/MS. Bioanalysis 2012; 4(9):1077-95; PMID:22612688; https://doi.org/10.4155/bio.12.85
  • Musteata FM. Pharmacokinetic applications of microdevices and microsampling techniques. Bioanalysis 2009; 1(1):171-85; PMID:21083195; https://doi.org/10.4155/bio.09.18
  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: Potential application in humorally mediated autoimmune disease. Int Immunol 2006; 18(12):1759-69; PMID:17077181; https://doi.org/10.1093/intimm/dxl110
  • Tam SH, McCarthy SG, Brosnan K, Goldberg KM, Scallon BJ. Correlations between pharmacokinetics of IgG antibodies in primates vs. FcRn-transgenic mice reveal a rodent model with predictive capabilities. MAbs 2013; 5(3):397-405; PMID:23549129; https://doi.org/10.4161/mabs.23836
  • Haraya K, Tachibana T, Nanami M, Ishigai M. Application of human FcRn transgenic mice as a pharmacokinetic screening tool of monoclonal antibody. Xenobiotica 2014; 44(12):1127-34; PMID:25030041; https://doi.org/10.3109/00498254.2014.941963
  • Avery LB, Wang M, Kavosi MS, Joyce A, Kurz JC, Fan YY, et al. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. MAbs 2016; 862(8):1064-78; PMID:27232760;https://doi.org/10.1080/19420862.2016.1193660; https://doi.org/10.1080/19420862.2016.1193660
  • Roopenian DC, Christianson GJ, Sproule TJ. Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 2010; 602:93-104; PMID:20012394; https://doi.org/10.1007/978-1-60761-058-8_6
  • Proetzel G, Roopenian DC. Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies. Methods 2014; 65(1):148-53; PMID:23867339; https://doi.org/10.1016/j.ymeth.2013.07.005
  • Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: What have we learned? MAbs 2011; 3(1):61-6; PMID:20962582; https://doi.org/10.4161/mabs.3.1.13799
  • Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu C-P, Stouch BJ, Hurh E, Gibbs MA. Quantitative prediction of human pharmacokinetics for monoclonal antibodies. Clin Pharmacokinet 2011; 50(2):131-42; PMID:21241072; https://doi.org/10.2165/11537430-000000000-00000
  • Wang W, Prueksaritanont T. Prediction of human clearance of therapeutic proteins: Simple allometric scaling method revisited. Biopharm Drug Dispos 2010; 31(4):253-63; PMID:20437464; https://doi.org/10.1002/bdd.708
  • Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, Murayama N, Kurihara A, Okudaira N, Izumi T. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet 2011; 26(4):423-30; PMID:21606605; https://doi.org/10.2133/dmpk.DMPK-11-RG-011
  • Ling J, Zhou H, Jiao Q, Davis HM. Interspecies scaling of therapeutic monoclonal antibodies: Initial look. J Clin Pharmacol 2009; 49(12):1382-402; PMID:19837907; https://doi.org/10.1177/0091270009337134
  • Grimm HP. Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn 2009; 36(5):407-20; PMID:19728050; https://doi.org/10.1007/s10928-009-9129-5
  • Prueksaritanont T, Tang C. ADME of biologics—what have we learned from small molecules? AAPS J 2012; 14(3):410-9; PMID:22484625; https://doi.org/10.1208/s12248-012-9353-6
  • Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010; 49(10):633-59; PMID:20818831; https://doi.org/10.2165/11535960-000000000-00000
  • Prueksaritanont T, Tang C. ADME of Biologics—What Have We Learned from Small Molecules? AAPS J. 2012; 14(3):410-9; PMID:22484625
  • Wang J, Iyer S, Fielder PJ, Davis JD, Deng R. Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: Comparative evaluation of prediction approaches in early drug development. Vol. 37, Biopharmaceutics and Drug Disposition 2016; 51-65; PMID:25869767

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.