2,616
Views
2
CrossRef citations to date
0
Altmetric
Reports

Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration

, , , , , , , , & show all
Pages 765-777 | Received 06 Nov 2017, Accepted 10 Apr 2018, Published online: 05 Jun 2018

References

  • Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherited Metabolic Dis. 2013;36(3):437–49. doi:10.1007/s10545-013-9608-0.
  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96. doi:10.1016/S1474-4422(07)70326-5. PMID:18093565.
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discovery. 2014;13(9):655–72. doi:10.1038/nrd4363. PMID:25103255.
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cerebral Blood Flow Metab. 2012;32(11):1959–72. doi:10.1038/jcbfm.2012.126.
  • Abuqayyas L, Balthasar JP. Investigation of the role of FcgammaR and FcRn in mAb distribution to the brain. Mol Pharmaceutics. 2013;10(5):1505–13. doi:10.1021/mp300214k.
  • Watts RJ, Dennis MS. Bispecific antibodies for delivery into the brain. Curr Opin Chem Biol. 2013;17(3):393–9. doi:10.1016/j.cbpa.2013.03.023. PMID:23570979.
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Delivery Rev. 2012;64(7):640–65. doi:10.1016/j.addr.2011.11.010.
  • Roy S. Strategic drug delivery targeted to the brain: A review. Der Pharmacia Sinica. 2012;3(1):76–92.
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95. doi:10.1208/s12248-012-9339-4. PMID:22407288.
  • Singh S. Nanomaterials as Non-viral siRNA delivery agents for cancer therapy. BioImpacts: BI. 2013;3(2):53–65. PMID:23878788.
  • Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Exp Opin Drug Delivery. 2013;10(7):889–905. doi:10.1517/17425247.2013.784742.
  • Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733–44. doi:10.1007/s11095-007-9324-2. PMID:17554607.
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther. 1991;259(1):66–70. PMID:1920136.
  • Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharmaceutical Res. 1995;12(6):807–16. doi:10.1023/A:1016244500596.
  • Stanimirovic D, Kemmerich K, Haqqani AS, Farrington GK. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. Adv Pharmacol. 2014;71:301–35. doi:10.1016/bs.apha.2014.06.005. PMID:25307221.
  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):84ra44. doi:10.1126/scitranslmed.3002230. PMID:21613623.
  • Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR, Tan C, Bien-Ly N, Hersom M, Maloney JA, Meilandt WJ, et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Science Transl Med. 2014;6(261):261ra154. doi:10.1126/scitranslmed.3009835.
  • Hackel BJ, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. doi:10.1016/j.neuron.2013.10.061. PMID:24411731.
  • Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, Luk W, Lu Y, Dennis MS, Weimer RM, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211(2):233–44. doi:10.1084/jem.20131660. PMID:24470444.
  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol. 2007;25(11):1290–7. doi:10.1038/nbt1345. PMID:17934452.
  • Gu J, Ghayur T. Generation of dual-variable-domain immunoglobulin molecules for dual-specific targeting. Methods Enzymol. 2012;502:25–41. doi:10.1016/B978-0-12-416039-2.00002-1. PMID:22208980.
  • Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discovery. 2007;6(4):295–303. doi:10.1038/nrd2176. PMID:17347655.
  • Blennow K, Vanmechelen E, Hampel H. CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer's disease. Mol Neurobiol. 2001;24(1-3):87–97. doi:10.1385/MN:24:1-3:087. PMID:11831556.
  • Miles LA, Crespi GA, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation. Scientific Reports. 2013;3:1302. doi:10.1038/srep01302. PMID:23416764.
  • Mehta AI, Brufsky AM, Sampson JH. Therapeutic approaches for HER2-positive brain metastases: circumventing the blood-brain barrier. Cancer Treat Rev. 2013;39(3):261–9. doi:10.1016/j.ctrv.2012.05.006. PMID:22727691.
  • Mueller BK, Yamashita T, Schaffar G, Mueller R. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1513–29. doi:10.1098/rstb.2006.1888. PMID:16939972.
  • Schwab JM, Monnier PP, Schluesener HJ, Conrad S, Beschorner R, Chen L, Meyermann R, Mueller BK. Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain. Arch Neurol. 2005;62(10):1561–8. doi:10.1001/archneur.62.10.1561. PMID:16216939.
  • Marques F, Sousa JC, Coppola G, Geschwind DH, Sousa N, Palha JA, Correia-Neves M. The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci. 2009;10:135. doi:10.1186/1471-2202-10-135. PMID:19922669.
  • McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation. 2008;5:45. doi:10.1186/1742-2094-5-45. PMID:18925972.
  • Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1beta and tumor necrosis factor-alpha: reliable targets for protective therapies in Parkinson's Disease? Front Cell Neurosci. 2013;7:53.
  • Leung L, Cahill CM. TNF-alpha and neuropathic pain–a review. J Neuroinflammation. 2010;7:27. doi:10.1186/1742-2094-7-27. PMID:20398373.
  • Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgard PO, Niewoehner J. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PloS One. 2014;9(4):e96340. doi:10.1371/journal.pone.0096340. PMID:24788759.
  • Yi X, Manickam DS, Brynskikh A, Kabanov AV. Agile delivery of protein therapeutics to CNS. J Controll Rel. 2014;190:637–63. doi:10.1016/j.jconrel.2014.06.017.
  • Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. doi:10.1016/j.neuron.2013.10.061. PMID:24411731.
  • Goulatis LI, Shusta EV. Protein engineering approaches for regulating blood-brain barrier transcytosis. Curr Opin Struct Biol. 2016;45:109–15. doi:10.1016/j.sbi.2016.12.005. PMID:28040636.
  • Bell RD, Ehlers MD. Breaching the blood-brain barrier for drug delivery. Neuron. 2014;81(1):1–3. doi:10.1016/j.neuron.2013.12.023. PMID:24411725.
  • Moos T. Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J Comp Neurol. 1996;375(4):675–92. doi:10.1002/(SICI)1096-9861(19961125)375:4%3c675::AID-CNE8%3e3.0.CO;2-Z. PMID:8930792.
  • Roskams AJ, Connor JR. Transferrin receptor expression in myelin deficient (md) rats. J Neurosci Res. 1992;31(3):421–7. doi:10.1002/jnr.490310304. PMID:1640494.
  • Roskams AJ, Connor JR. Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem. 1994;63(2):709–16. doi:10.1046/j.1471-4159.1994.63020709.x. PMID:8035195.
  • Boado RJ, Zhou QH, Lu JZ, Hui EK, Pardridge WM. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm. 2010;7(1):237–44. doi:10.1021/mp900235k. PMID:19921848.
  • Byrne H, Conroy PJ, Whisstock JC, O'Kennedy RJ. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol. 2013;31(11):621–32. doi:10.1016/j.tibtech.2013.08.007. PMID:24094861.
  • DiGiammarino E, Ghayur T, Liu J. Design and generation of DVD-Ig molecules for dual-specific targeting. Methods Mol Biol. 2012;899:145–56. doi:10.1007/978-1-61779-921-1_9. PMID:22735951.
  • Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 2012;503:269–92. doi:10.1016/B978-0-12-396962-0.00011-2. PMID:22230573.
  • Fendly BM, Toy KJ, Creasey AA, Vitt CR, Larrick JW, Yamamoto R, Lin LS. Murine monoclonal antibodies defining neutralizing epitopes on tumor necrosis factor. Hybridoma. 1987;6(4):359–70. doi:10.1089/hyb.1987.6.359. PMID:2442093.
  • Severyn CJ, Shinde U, Rotwein P. Molecular biology, genetics and biochemistry of the repulsive guidance molecule family. Biochem J. 2009;422(3):393–403. doi:10.1042/BJ20090978. PMID:19698085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.