2,122
Views
2
CrossRef citations to date
0
Altmetric
Report

Antibody characterization using novel ERLIC-MS/MS-based peptide mapping

ORCID Icon, , , , &
Pages 951-959 | Received 13 Jun 2018, Accepted 23 Jul 2018, Published online: 11 Sep 2018

References

  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7:9–14. doi:10.4161/19420862.2015.989042.
  • Mullard A. 2016 FDA drug approvals. Nat Rev Drug Discov. 2017;16:73–76. doi:10.1038/nrd.2017.14.
  • Shepard HM, Phillips GL, Thanos CD, Feldmann M. Developments in therapy with monoclonal antibodies and related proteins. Clin Med (Lond). 2017;17:220–232. doi:10.7861/clinmedicine.17-3-220.
  • Hey A. History and practice: antibodies in infectious diseases. Microbiol Spectr. 2015;3:AID-0026–2014. doi:10.1128/microbiolspec.AID-0026-2014.
  • Novak JC, Lovett-Racke AE, Racke MK. Monoclonal antibody therapies and neurologic disorders. Arch Neurol. 2008;65:1162–1165. doi:10.1001/archneur.65.9.1162.
  • Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32:992–1000. doi:10.1038/nbt.3040.
  • Liu H, Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs. 2014;1145–1154. doi:10.4161/mabs.29883.
  • Struble E, Kirschbaum N, Liu J, Marszal E, Shapiro M. Protein Therapeutics. Topics in Medicinal Chemistry. Vol. 21. Cham: Springer. doi:10.1007/7355_2015_5005.
  • Gramer MJ. Product quality considerations for mammalian cell culture process development and manufacturing. Adv Biochem Eng Biotechnol. 2014;139:123–166. doi:10.1007/10_2013_214.
  • Bongers J, Cummings JJ, Ebert MB, Federici MM, Gledhill L, Gulati D, Hilliard GM, Jones BH, Lee KR, Mozdzanowski J, et al. Validation of a peptide mapping method for a therapeutic monoclonal antibody: what could we possibly learn about a method we have run 100 times?. J Pharm Biomed Anal. 2000;21:1099–1128.
  • Højrup P. Proteolytic peptide mapping. HPLC of Peptides and Proteins: Methods and Protocols. 2004;251:227–244.
  • Gaza-Bulseco G, Li B, Bulseco A, Liu H. Method to differentiate asn deamidation that occurred prior to and during sample preparation of a monoclonal antibody. Anal Chem. 2008;80:9491–9498. doi:10.1021/ac801617u.
  • Ren D, Ratnaswamy G, Beierle J, Treuheit MJ, Brems DN, Bondarenko PV. Degradation products analysis of an Fc fusion protein using LC/MS methods. Int J Biol Macromol. 2009;44:81–85. doi:10.1016/j.ijbiomac.2008.10.006.
  • Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem. 2008;80:62–76. doi:10.1021/ac070997p.
  • Alpert AJ, Hudecz O, Mechtler K. Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal Chem. 2015;87:4704–4711. doi:10.1021/ac504420c.
  • Boichenko AP, Govorukhina N, Van Der Zee AG, Bischoff R. Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases. J Sep Sci. 2013;36:3463–3470. doi:10.1002/jssc.201300750.
  • Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. MAbs. 2015;7:881–890. doi:10.1080/19420862.2015.1069454.
  • Wang C, Yamniuk A, Dai J, Chen S, Stetsko P, Ditto N, Zhang Y. Investigation of a degradant in a biologics formulation buffer containing L-histidine. Pharm Res. 2015;32:2625–2635. doi:10.1007/s11095-015-1648-8.
  • Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A. Multidimensional electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research. Biochimica Et Biophysica Acta (Bba)-Proteins and Proteomics. 2015;1854:460–468. doi:10.1016/j.bbapap.2015.01.006.
  • Hao P, Qian J, Dutta B, Cheow ESH, Sim KH, Meng W, Adav SS, Alpert A, Sze SK. Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry. J Proteome Res. 2012;11:1804–1811. doi:10.1021/pr201048c.
  • Hao P, Guo T, Li X, Adav SS, Yang J, Wei M, Sze SW. Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome. J Proteome Res. 2010;9:3520–3526. doi:10.1021/pr100037h.
  • Serra A, Gallart-Palau X, Wei J, Sze SK. Characterization of glutamine deamidation by long-length electrostatic repulsion-hydrophilic interaction chromatography-tandem mass spectrometry (LERLIC-MS/MS) in shotgun proteomics. Anal Chem. 2016;88:10573–10582. doi:10.1021/acs.analchem.6b02688.
  • Alpert AJ, Petritis K, Kangas L, Smith RD, Mechtler K, Mitulovic G, Mohammed S, Heck AJR. Peptide orientation affects selectivity in ion-exchange chromatography. Anal Chem. 2010;82:5253–5259. doi:10.1021/ac100651k.
  • Michalski A, Damoc E, Hauschild J-P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10:M111. 011015. doi:10.1074/mcp.M111.011015.
  • Krokhin OV, Anderson G, Spicer V, Sun L, Dovichi NJ. Predicting electrophoretic mobility of tryptic peptides for high-throughput CZE-MS analysis. Anal Chem. 2017;89:2000–2008. doi:10.1021/acs.analchem.6b04544.
  • Krokhin OV, Ezzati P, Spicer V. Peptide retention time prediction in hydrophilic interaction liquid chromatography: data collection methods and features of additive and sequence-specific models. Anal Chem. 2017;89:5526–5533. doi:10.1021/acs.analchem.7b00537.
  • Petritis K, Kangas LJ, Yan B, Monroe ME, Strittmatter EF, Qian WJ, Adkins JN, Moore RJ, Xu Y, Lipton MS, et al. Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information. Anal Chem. 2006;78:5026–5039. doi:10.1021/ac060143p.
  • Gilar M, Jaworski A, Olivova P, Gebler JC. Peptide retention prediction applied to proteomic data analysis. Rapid Commun Mass Spectrom. 2007;21:2813–2821. doi:10.1002/rcm.3150.
  • Liu YD, Goetze AM, Bass RB, Flynn GC. N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J Biol Chem. 2011;286:11211–11217. doi:10.1074/jbc.M110.185041.
  • Chelius D, Jing K, Lueras A, Rehder DS, Dillon TM, Vizel A, Rajan RS, Li T, Treuheit MJ, Bondarenko PV. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies. Anal Chem. 2006;78:2370–2376. doi:10.1021/ac051827k.
  • Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci. 2009;18:424–433. doi:10.1002/pro.45.
  • Guan Z, Yates NA, Bakhtiar R. Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation. J Am Soc Mass Spectrom. 2003;14:605–613. doi:10.1016/S1044-0305(03)00201-0.
  • Pace AL, Wong RL, Zhang YT, Kao YH, Wang YJ. Asparagine deamidation dependence on buffer type, pH, and temperature. J Pharm Sci. 2013;102:1712–1723. doi:10.1002/jps.23529.
  • Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaïa N, Ionescu R, Beck A. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392:145–154. doi:10.1016/j.ab.2009.05.043.
  • Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;613–624. doi:10.4161/mabs.2.6.13333.
  • Leblanc Y, Ramon C, Bihoreau N, Chevreux G. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: case study after a long-term storage at +5 degrees C. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1048:130–139. doi:10.1016/j.jchromb.2017.02.017.
  • Yin S, Pastuskovas CV, Khawli LA, Stults JT. Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res. 2013;30:167–178. doi:10.1007/s11095-012-0860-z.
  • Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;578–585. doi:10.4161/mabs.21328.
  • Higel F, Seidl A, Sörgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharmaceutics Biopharmaceutics. 2016;100:94–100. doi:10.1016/j.ejpb.2016.01.005.
  • Sinha S, Pipes G, Topp EM, Bondarenko PV, Treuheit MJ, Gadgil HS. Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J Am Soc Mass Spectrom. 2008;19:1643–1654. doi:10.1016/j.jasms.2008.07.004.
  • Alpert AJ, Regnier FE. Preparation of a porous microparticulatee anion-exchange chromatography support for proteins. J Chromatogr. 1979;185:375–392. doi:10.1016/S0021-9673(00)85615-0.
  • Kozlowski LP. IPC – isoelectric point calculator. Biology Direct. 2016;11:55. doi:10.1186/s13062-016-0159-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.