5,673
Views
33
CrossRef citations to date
0
Altmetric
Report

Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling

ORCID Icon, , , , , & ORCID Icon show all
Pages 191-204 | Received 22 Jul 2018, Accepted 13 Sep 2018, Published online: 02 Oct 2018

References

  • Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell line techniques and gene editing tools for antibody production: A review. Front Pharmacol. 2018;9:630. doi:10.3389/fphar.2018.00529.
  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. mAbs. 2010;2:466–477. doi:10.4161/mabs.2.5.12720.
  • Wurm FM. CHO Quasispecies—implications for Manufacturing Processes. Processes. 2013;1:296–311. doi:10.3390/pr1030296.
  • Xu J, Jin M, Song H, Huang C, Xu X, Tian J, Qian N-X, Steger K, Lewen NS, Tao L, et al. Brown drug substance color investigation in cell culture manufacturing using chemically defined media: A case study. Process Biochem. 2014;49:130–139. doi:10.1016/j.procbio.2013.10.015.
  • Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. mAbs. 2018;10:488–499. doi:10.1080/19420862.2018.1433978.
  • Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30:1158–1170. doi:10.1016/j.biotechadv.2011.08.022.
  • Al-Fageeh MB, Smales CM. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J. 2006;397:247–259. doi:10.1042/BJ20060166.
  • Huang CJ, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 2012;39:383–399. doi:10.1007/s10295-011-1082-9.
  • Xu J, Qian Y, Skonezny PM, You L, Xing Z, Meyers DS, Stankavage RJ, Pan S-H, Li ZJ. Reduction of N-terminal methionylation while increasing titer by lowering metabolic and protein production rates in E. coli auto-induced fed-batch fermentation. J Ind Microbiol Biotechnol. 2012;39:1199–1208. doi:10.1007/s10295-012-1127-8.
  • Becerra S, Berrios J, Osses N, Altamirano C. Exploring the effect of mild hypothermia on CHO cell productivity. Biochem Eng J. 2012;60:1–8. doi:10.1016/j.bej.2011.10.003.
  • Masterton RJ, Smales CM. The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm Bioprocess. 2014;2:49–61. doi:10.4155/pbp.14.3.
  • Fan L, Zhao L, Ye Z, Sun Y, Kou T, Zhou Y, Tan W-S. Effect of culture temperature on TNFR-Fc productivity in recombinant glutamine synthetase-chinese hamster ovary cells. Biotechnol Lett. 2010;32:1239–1244. doi:10.1007/s10529-010-0318-5.
  • Han YK, Koo TY, Lee GM. Enhanced interferon-β production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnol Prog. 2009;25:1440–1447. doi:10.1002/btpr.234.
  • Nam JH, Ermonval M, Sharfstein ST. The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions. Cytotechnology. 2009;59:81–91. doi:10.1007/s10616-009-9196-x.
  • Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ. Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng. 2010;105:1048–1057. doi:10.1002/bit.22644.
  • Kaisermayer C, Reinhart D, Gili A, Chang M, Aberg PM, Castan A, Kunert R. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression. J Biotechnol. 2016;227:3–9. doi:10.1016/j.jbiotec.2016.03.054.
  • Torres M, Zúñiga R, Gutierrez M, Vergara M, Collazo N, Reyes J, Berrios J, Aguillon JC, Molina MC, Altamirano C, et al. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS ONE. 2018;13. doi:10.1371/journal.pone.0194510.
  • Sung KY, Sun OH, Gyun ML. Enhancing effect of low culture temperature on specific antibody productivity of recombinant Chinese hamster ovary cells: clonal variation. Biotechnol Prog. 2004;20:1683–1688. doi:10.1021/bp049847f.
  • Yoon SK, Kim SH, Lee GM. Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog. 2003;19:1383–1386. doi:10.1021/bp034051m.
  • Kaufmann H, Mazur X, Fussenegger M, Bailey JE. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng. 1999;63:573–582.
  • Jorjani P, Ozturk SS. Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng. 1999;64:349–356.
  • Weidemann R, Ludwig A, Kretzmer G. Low temperature cultivation - A step towards process optimisation. Cytotechnology. 1994;15:111–116.
  • Jing Y, Borys M, Nayak S, Egan S, Qian Y, Pan SH, Li ZJ. Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochem. 2012;47:69–75. doi:10.1016/j.procbio.2011.10.009.
  • Kishishita S, Nishikawa T, Shinoda Y, Nagashima H, Okamoto H, Takuma S, Aoyagi H. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J Biosci Bioeng. 2015;119:700–705. doi:10.1016/j.jbiosc.2014.10.028.
  • Zhang X, Sun YT, Tang H, Fan L, Hu D, Liu J, Liu X, Tan W-S. Culture temperature modulates monoclonal antibody charge variation distribution in Chinese hamster ovary cell cultures. Biotechnol Lett. 2015;37:2151–2157. doi:10.1007/s10529-015-1904-3.
  • Goey CH, Bell D, Kontoravdi C. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography. mAbs. 2018;10:476–487. doi:10.1080/19420862.2018.1433977.
  • Rodriguez J, Spearman M, Tharmalingam T, Sunley K, Lodewyks C, Huzel N, Butler M. High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. J Biotechnol. 2010;150:509–518. doi:10.1016/j.jbiotec.2010.09.959.
  • Schilling BM, Gangloff S, Kothari D, Leister K, Matlock L, Zegarelli SG, Joosten CE, Basch JD, Sakhamuri S, Lee SS. Product quality enhancement in mammalian cell culture processes for protein production. United States Patent 2008; US 7,332,303 B2.2008
  • Aghamohseni H, Spearman M, Ohadi K, Braasch K, Moo-Young M, Butler M, Budman HM. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions. J Ind Microbiol Biotechnol. 2017;44:1005–1020. doi:10.1007/s10295-017-1926-z.
  • Chen C, Le H, Follstad B, Goudar CT. A comparative transcriptomics workflow for analyzing microarray data from CHO cell cultures. Biotechnol J. 2018;13:1700228. doi:10.1002/biot.v13.3.
  • Goey CH, Tsang JMH, Bell D, Kontoravdi C. Cascading effect in bioprocessing—the impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnol Bioeng. 2017;114:2771–2781. doi:10.1002/bit.26437.
  • Lee JH, Reier J, Heffner KM, Barton C, Spencer D, Schmelzer AE, Venkat R. Production and characterization of active recombinant human factor II with consistent sialylation. Biotechnol Bioeng. 2017;114:1991–2000. doi:10.1002/bit.26317.
  • Paul AJ, Handrick R, Ebert S, Hesse F. Identification of process conditions influencing protein aggregation in Chinese hamster ovary cell culture. Biotechnol Bioeng. 2018;115:1173–1185. doi:10.1002/bit.26534.
  • Valente KN, Levy NE, Lee KH, Lenhoff AM. Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing. Curr Opin Biotechnol. 2018;53:144–150. doi:10.1016/j.copbio.2018.01.004.
  • Huang Z, Lee DY, Yoon S. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures. Biotechnol Bioeng. 2017;114:2717–2728. doi:10.1002/bit.26384.
  • Kyriakopoulos S, Ang KS, Lakshmanan M, Huang Z, Yoon S, Gunawan R, Lee D-Y. Kinetic modeling of mammalian cell culture bioprocessing: the quest to advance biomanufacturing. Biotechnol J. 2018;13. doi:10.1002/biot.v13.3.
  • Liu S. Bioprocess engineering: kinetics, sustainability, and reactor design. Amsterdam: Elsevier; 2016.
  • Xing Z, Bishop N, Leister K, Li ZJ. Modeling kinetics of a large-scale fed-batch CHO cell culture by markov chain monte carlo method. Biotechnol Prog. 2010;26:208–219. doi:10.1002/btpr.284.
  • López-Meza J, Araíz-Hernández D, Carrillo-Cocom LM, López-Pacheco F, Rocha-Pizaña MR, Alvarez MM. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology. 2016;68:1287–1300. doi:10.1007/s10616-015-9889-2.
  • Liu S. A review on protein oligomerization process. Int J Precis Eng Manuf. 2015;16:2731–2760. doi:10.1007/s12541-015-0349-x.
  • Tang P, Xu J, Oliveira CL, Li ZJ, Liu S. A mechanistic kinetic description of lactate dehydrogenase elucidating cancer diagnosis and inhibitor evaluation. J Enzyme Inhib Med Chem. 2017;32:564–571. doi:10.1080/14756366.2016.1275606.
  • Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, et al. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 2016;3:434–443. e8. doi:10.1016/j.cels.2016.10.020.
  • Dermol J, Miklavčič D. Mathematical models describing chinese hamster ovary cell death due to electroporation in vitro. J Membr Biol. 2015;248:865–881. doi:10.1007/s00232-015-9825-6.
  • Jandt U, Platas Barradas O, Pörtner R, Zeng AP. Synchronized mammalian cell culture: part II-population ensemble modeling and analysis for development of reproducible processes. Biotechnol Prog. 2015;31:175–185. doi:10.1002/btpr.2006.
  • Klein T, Heinzel N, Kroll P, Brunner M, Herwig C, Neutsch L. Quantification of cell lysis during CHO bioprocesses: impact on cell count, growth kinetics and productivity. J Biotechnol. 2015;207:67–76. doi:10.1016/j.jbiotec.2015.04.021.
  • Pybus LP, Dean G, West NR, Smith A, Daramola O, Field R, Wilkinson SJ, James DC. Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Bioeng. 2014;111:372–385. doi:10.1002/bit.25116.
  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, et al. Process parameter shifting: part II. Biphasic cultivation - A tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng. 2006;94:1045–1052. doi:10.1002/bit.20958.
  • Bollati-Fogolín M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratje R. Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog. 2005;21:17–21. doi:10.1021/bp049825t.
  • Kou TC, Fan L, Ye ZY, Zhou Y, Liu XP, Zhao L, Tan W-S. Process analysis of reduced specific productivity of TNFR-Fc in Chinese hamster ovary cells at high cell density. Process Biochem. 2011;46:1492–1499. doi:10.1016/j.procbio.2011.04.001.
  • Martínez VS, Buchsteiner M, Gray P, Nielsen LK, Quek LE. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism. Metab Eng Commun. 2015;2:46–57. doi:10.1016/j.meteno.2015.06.001.
  • Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang Y-M. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog. 2014;30:616–625. doi:10.1002/btpr.1884.
  • Golabgir A, Gutierrez JM, Hefzi H, Li S, Palsson BO, Herwig C, Lewis NE. Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow. Biotechnol Adv. 2016;34:621–633. doi:10.1016/j.biotechadv.2016.02.011.
  • Sou SN, Sellick C, Lee K, Mason A, Kyriakopoulos S, Polizzi KM, Kontoravdi C. How does mild hypothermia affect monoclonal antibody glycosylation? Biotechnol Bioeng. 2015;112:1165–1176. doi:10.1002/bit.25524.
  • Xu S, Hoshan L, Chen H. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Bioprocess and Biosyst Eng. 2016;39:1689–1702. doi:10.1007/s00449-016-1644-3.
  • Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST. Reduced culture temperature differentially affects expression and biophysical properties of monoclonal antibody variants. Antibodies. 2014;3:253–271. doi:10.3390/antib3030253.
  • Bedoya-López A, Estrada K, Sanchez-Flores A, Ramírez OT, Altamirano C, Segovia L, Miranda-Ríos J, Trujillo-Roldán MA, Valdez-Cruz NA, Coles JA. Effect of temperature downshift on the transcriptomic responses of Chinese hamster ovary cells using recombinant human tissue plasminogen activator production culture. PLoS ONE. 2016;11. doi:10.1371/journal.pone.0151529.
  • Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115:1646–1665. doi:10.1002/bit.26587.
  • Karra S, Sager B, Karim MN. Multi-scale modeling of heterogeneities in mammalian cell culture processes. Ind Eng Chem Res. 2010;49:7990–8006. doi:10.1021/ie100125a.
  • Selişteanu D, Endrescu D, Georgeanu V, Roman M. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation. BioMed Res Int. 2015;2015: article ID 598721. doi:10.1155/2015/598721.
  • Ahn WS, Antoniewicz MR. Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J. 2012;7:61–74. doi:10.1002/biot.201100052.
  • Toussaint C, Henry O, Durocher Y. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. J Biotechnol. 2016;217:122–131. doi:10.1016/j.jbiotec.2015.11.010.
  • Le H, Kabbur S, Pollastrini L, Sun Z, Mills K, Johnson K, Karypis G, Hu W-S. Multivariate analysis of cell culture bioprocess data–lactate consumption as process indicator. J Biotechnol. 2012;162:210–223. doi:10.1016/j.jbiotec.2012.08.021.
  • Altamirano C, Paredes C, Cairó JJ, Gòdia F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog. 2000;16:69–75. doi:10.1021/bp990124j.
  • Carrillo-Cocom LM, Genel-Rey T, Araíz-Hernández D, López-Pacheco F, López-Meza J, Rocha-Pizaña MR, Ramírez-Medrano A, Alvarez MM. Amino acid consumption in naïve and recombinant CHO cell cultures: producers of a monoclonal antibody. Cytotechnology. 2015;67:809–820. doi:10.1007/s10616-014-9720-5.
  • Jedrzejewski PM, Del Val IJ, Constantinou A, Dell A, Haslam SM, Polizzi KM, Kontoravdi C. Towards controlling the glycoform: A model framework linking extracellular metabolites to antibody glycosylation. Int J Mol Sci. 2014;15:4492–4522. doi:10.3390/ijms15034492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.