1,714
Views
4
CrossRef citations to date
0
Altmetric
Report

Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX

ORCID Icon, , , ORCID Icon, , , , , , , ORCID Icon, , , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 1997072 | Received 05 Jul 2021, Accepted 20 Oct 2021, Published online: 23 Nov 2021

References

  • Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112(8):4421–15. doi:10.1021/cr200176r. PMID: 22607219.
  • Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2013;28(2):267–77. doi:10.3109/14756366.2012.737323. PMID: 23137351.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–81. doi:10.1038/nrd2467. PMID: 18167490.
  • Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60(24):7075–83. PMID: 11156414.
  • Tan EY, Yan M, Campo L, Han C, Takano E, Turley H, Candiloro I, Pezzella F, Gatter KC, Millar EKA, et al. The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer. 2009;100(2):405–11. PMID: 19165203. doi:10.1038/sj.bjc.6604844.
  • Yang JS, Lin CW, Chuang CY, Su SC, Lin SH, Yang SF. Carbonic anhydrase IX overexpression regulates the migration and progression in oral squamous cell carcinoma. Tumor Biology. 2015;36(12):9517–24. doi:10.1007/s13277-015-3692-8. PMID: 26130414.
  • Yang JS, Lin CW, Hsieh YH, Chien MH, Chuang CY, Yang SF. Overexpression of carbonic anhydrase IX induces cell motility by activating matrix metalloproteinase-9 in human oral squamous cell carcinoma cells. Oncotarget. 2017;8(47):83088–99. doi:10.18632/oncotarget.20236. PMID: 29137326.
  • Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, Pastorek J. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112(2):398–408. doi:10.1053/gast.1997.v112.pm9024293. PMID: 9024293.
  • Saarnio J, Parkkila S, Parkkila AK, Waheed A, Casey MC, Zhou XY, Pastoreková S, Pastorek J, Karttunen T, Haukipuro K, et al. Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in the epithelial cells with the highest proliferative capacity. J Histochem Cytochem: Official J Histochem Soc. 1998;46(4):497–504. PMID: 9524195. doi:10.1177/002215549804600409.
  • Supuran CT, Alterio V, Di Fiore A, D’ Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev. 2018;38(6):1799–836. doi:10.1002/med.21497. PMID: 29635752.
  • Mboge MY, McKenna R, Frost SC. Advances in anti-cancer drug development targeting carbonic anhydrase IX and XII. Topics in Anti-Cancer Res. 2016;5:3–42. doi:10.2174/9781681083339116050004. PMID: 30272043.
  • Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan P, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U.S.A. Proc. Natl. Acad. Sci. U.S.A. 2009;106( 38):16233–38. doi: 10.1073/pnas.0908301106. PMID: 19805286.
  • Csaderova L, Debreova M, Radvak P, Stano M, Vrestiakova M, Kopacek J, Pastorekova S, Svastova E. The effect of carbonic anhydrase IX on focal contacts during cell spreading and migration. Front Physiol. 2013;4:271. doi:10.3389/fphys.2013.00271. PMID: 24101905.
  • Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74:1–20. doi:10.1016/S0163-7258(96)00198-2. PMID: 9336012.
  • Maupin CM, McKenna R, Silverman DN, Voth GA. Elucidation of the proton transport mechanism in human carbonic anhydrase II. J Am Chem Soc. 2009;131(22):7598–608. doi:10.1021/ja8091938. PMID: 19438233.
  • Domsic JF, Avvaru BS, Chae UK, Gruner SM, Agbandje-mckenna M, Silverman DN, McKenna R. Entrapment of carbon dioxide in the active site of carbonic anhydrase II. J Biol Chem. 2008;283(45):30766–71. doi:10.1074/jbc.M805353200. PMID: 18768466.
  • Kazokaitė J, Aspatwar A, Parkkila S, Matulis D. An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ. 2017;2017(11). doi:10.7717/peerj.4068. PMID: 29181278.
  • Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov. 2017;12(1):61–88. doi:10.1080/17460441.2017.1253677. PMID: 2778354.
  • De Simone G, Alterio V, Supuran CT. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opin Drug Discov. 2013;8(7):793–810. doi:10.1517/17460441.2013.795145. PMID: 23627619.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–60. doi:10.3109/14756366.2015.1122001. PMID: 26619898.
  • Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535. doi:10.1002/prp2.535. PubMed PMID: 31859459; PMID: 31859459.
  • Oosterwdk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EKJ, Jonas U, Zwartendijk I, Warnaar SO. Monoclonal antibody G 250 recognizes a determinant present in renal‐cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38(4):489–94. doi:10.1002/ijc.2910380406. PMID: 2428759.
  • Oosterwijk-Wakka JC, Boerman OC, Mulders PFAM, Oosterwijk E. Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma. Int J Mol Sci. 2013;14(6):11402–23. doi:10.3390/ijms140611402. PMID: 23759990.
  • Belldegrun AS, Chamie K, Kloepfer P, Fall B, Bevan P, Störkel S, Wilhelm O, Pantuck AJ. ARISER: a randomized double blind phase III study to evaluate adjuvant cG250 treatment versus placebo in patients with high-risk ccRCC—Results and implications for adjuvant clinical trials. J Clin Oncol. 2013;31(15_suppl):4507. doi:10.1200/jco.2013.31.15_suppl.4507. PMID.
  • Závada J, Závadová Z, Pastorek J, Biesovä Z, Ježek J, Velek J. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer. 2000;82(11):1808–13. doi:10.1054/bjoc.2000.1111. PMID: 10839295.
  • Chrastina A, Závada J, Parkkila S, Kaluz Š, Kaluzová M, Rajčáni J, Pastorek J, Pastoreková S. Biodistribution and pharmacokinetics of 125I-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int J Cancer. 2003;105(6):873–81. doi:10.1002/ijc.11142. PMID: 12767076.
  • Ahlskog JKJ, Schliemann C, Mårlind J, Qureshi U, Ammar A, Pedley RB, Neri D. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer. 2009;101(4):645–57. doi:10.1038/sj.bjc.6605200. PMID: 19623173.
  • Murri-Plesko MT, Hulikova A, Oosterwijk E, Scott AM, Zortea A, Harris AL, Ritter G, Old L, Bauer S, Swietach P, et al. Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. Eur J Pharmacol. 2011;657(1–3):173–83. PMID: 21315712. doi:10.1016/j.ejphar.2011.01.063.
  • Zatovicova M, Jelenska L, Hulikova A, Csaderova L, Ditte Z, Ditte P, Goliasova T, Pastorek J, Pastorekova S. Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des. 2010;16(29):3255–63. doi:10.2174/138161210793429832. PMID: 20819068.
  • Petrul HM, Schatz CA, Kopitz CC, Adnane L, McCabe TJ, Trail P, Ha S, Chang YS, Voznesensky A, Ranges G, et al. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther. 2012;11(2):340–49. PMID: 22147747. doi:10.1158/1535-7163.MCT-11-0523.
  • Pal SK, Agarwal N. Kidney cancer: findinga niche for girentuximab in metastatic renal cell carcinoma. Nat Rev Urol. 2016;13(8):442. doi:10.1038/nrurol.2016.115. PMID: 27349371.
  • Rojas G, Tundidor Y, Infante YC. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. mAbs. 2014;6(6):1368–76. doi:10.4161/mabs.36144. PMID: 25484050.
  • Benjamin DC, Perdue SS. Site-directed mutagenesis in epitope mapping. Meth: A Companion to Meth Enzymol. 1996;9(3):508–15. doi:10.1006/meth.1996.0058. PMID: 8812706.
  • Buus S, Rockberg J, Forsström B, Nilsson P, Uhlen M, Schafer-Nielsen C. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Molecular and Cellular Proteomics. 2012;11(12):1790–800. doi:10.1074/mcp.M112.020800. PMID: 22984286.
  • Bianchi M, Turner HL, Nogal B, Cottrell CA, Oyen D, Pauthner M, Bastidas R, Nedellec R, McCoy LE, Wilson IA, et al. Electron-microscopy-based epitope mapping defines specificities of polyclonal antibodies elicited during HIV-1 BG505 envelope trimer immunization. Immunity. 2018;49(2):288–300.e8. PMID: 30097292. doi:10.1016/j.immuni.2018.07.009.
  • Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal. 2020;184:113169. doi:10.1016/j.jpba.2020.113169. PMID: 32092629.
  • Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO. Mass spectrometric epitope mapping. Mass Spectrom Rev. 2018;37(2):229–41. doi:10.1002/mas.21516. PMID: 27403762.
  • Sheff JG, Farshidfar F, Bathe OF, Kopciuk K, Gentile F, Tuszynski J, Barakat K, Schriemer DC. Novel allosteric pathway of Eg5 regulation identified through multivariate statistical analysis of hydrogen-exchange mass spectrometry (HX-MS) ligand screening data. Mol Cell Proteom. 2017;16(3):428–37. doi:10.1074/mcp.M116.064246. PMID: 28062800.
  • Kang H, Yang H-S, Ki AY, Ko S-B, Kim KW, Shim CY, Kim K, Choi H-J, Chung KY. Conformational dynamics and functional implications of phosphorylated β-arrestins. Structure. 2020;28:314–323.e3. doi:10.1016/j.str.2019.12.008. PMID: 31948726.
  • Guo C, Steinberg LK, Cheng M, Song JH, Henderson JP, Gross ML. Site-specific siderocalin binding to ferric and ferric-free enterobactin as revealed by mass spectrometry. ACS Chem Biol. 2020;15(5):1154–60. doi:10.1021/acschembio.9b00741. PMID: 31869199.
  • Huang RY, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406(26):6541–58. doi:10.1007/s00216-014-7924-3. PubMed PMID: 24948090; PMID: 24948090.
  • Huang RY, Krystek SR Jr., Felix N, Graziano RF, Srinivasan M, Pashine A, Chen G. Hydrogen/deuterium exchange mass spectrometry and computational modeling reveal a discontinuous epitope of an antibody/TL1A Interaction. MAbs. 2018;10(1):95–103. doi:10.1080/19420862.2017.1393595. PubMed PMID: 29135326; PMID: 29135326.
  • Huang RY, Kuhne M, Deshpande S, Rangan V, Srinivasan M, Wang Y, Chen G. Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I chain-related A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry. Anal Bioanal Chem. 2020;412(7):1693–700. doi:10.1007/s00216-020-02409-x. PubMed PMID: 31993727; PMID: 31993727.
  • Huang RY, Wang F, Wheeler M, Wang Y, Langish R, Chau B, Dong J, Morishige W, Bezman N, Strop P, et al. Integrated approach for characterizing bispecific antibody/antigens complexes and mapping binding epitopes with SEC/MALS, native mass spectrometry, and protein footprinting. Anal Chem. 2020;92(15):10709–16. PubMed PMID: 32639723; PMID: 32639723. doi:10.1021/acs.analchem.0c01876.
  • Zhang MM, Huang RY, Beno BR, Deyanova EG, Li J, Chen G, Gross ML. Epitope and paratope mapping of PD-1/Nivolumab by mass spectrometry-based hydrogen-deuterium exchange, cross-linking, and molecular docking. Anal Chem. 2020;92(13):9086–94. doi:10.1021/acs.analchem.0c01291. PubMed PMID: 32441507; PMID: 32441507.
  • Grauslund LR, Calvaresi V, Pansegrau W, Norais N, Rand KD. Epitope and paratope mapping by HDX-MS combined with SPR elucidates the difference in bactericidal activity of two anti-NadA monoclonal antibodies. J Am Soc Mass Spectrom. 2021;32(7):1575–82. doi:10.1021/jasms.0c00431. PubMed PMID: 33683906; PMID: 33683906.
  • Zhang Q, Yang J, Bautista J, Badithe A, Olson W, Liu Y. Epitope mapping by HDX-MS elucidates the surface coverage of antigens associated with high blocking efficiency of antibodies to birch pollen allergen. Anal Chem. 2018;90(19):11315–23. doi:10.1021/acs.analchem.8b01864. PMID: 30170487.
  • Zhu S, Liuni P, Ettorre L, Chen T, Szeto J, Carpick B, James DA, Wilson DJ. Hydrogen deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochemistry. 2018;acs.biochem.8b01123. doi:10.1021/acs.biochem.8b01123. PMID: 30560647.
  • Lim XX, Chandramohan A, Lim XYE, Crowe JE, Lok SM, Anand GS. Epitope and paratope mapping reveals temperature-dependent alterations in the dengue-antibody interface. Structure. 2017;25(9):1391–1402.e3. doi:10.1016/j.str.2017.07.007. PMID: 28823471.
  • Hvidt A, Linderstrøm-Lang K. Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta. 1954;14(C):574–75. doi:10.1016/0006-3002(54)90241-3. PMID: 13198919.
  • Chalmers MJ, Busby SA, Pascal BD, West GM, Griffin PR. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev Proteomics. 2011;8(1):43–59. doi:10.1586/epr.10.109. PMID: 21329427.
  • Lenferink AG, McDonald PC, Gosselin M, Baardsnes J, Robert A, Cepero-Donates Y, Radinovic S, Salois P, Parat M, L’Abbé D, et al. Isolation and characterization of monoclonal antibodies against human carbonic anhydrase-IX. mAbs. 2021; in press. PMID.
  • Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, Apetri A. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-41179-0. PMID: 30894620.
  • Zatovicova M, Jelenska L, Hulikova A, Ditte P, Ditte Z, Csaderova L, Svastova E, Schmalix W, Boettger V, Bevan P, et al. Monoclonal antibody G250 targeting CA IX: binding specificity, internalization and therapeutic effects in a non-renal cancer model. Int J Oncol. 2014;45(6):2455–67. PMID: 25230982. doi:10.3892/ijo.2014.2658.
  • Lenferink A, O’Connor M, inventors HIGH AFFINITY MONOCLONAL ANTIBODIES (MABS) AGAINST CELL SURFACE EXPRESSED HUMAN CARBONIC ANHYDRASE IX (HCA-IX), AND USES THEREOF patent WO/2019/204939. 2019.
  • Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A, Venkateswaran G, Shankar J, Gao G, Laurent EMN, et al. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene. 2017;36(45):6244–61. PubMed PMID: 28692057; PMID: 28692057. doi:10.1038/onc.2017.219.
  • Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, et al. Targeting hypoxia-induced carbonic anhydrase IX enhances Immune-checkpoint blockade locally and systemically. Cancer Immunol Res. 2019;7(7):1064–78. PubMed PMID: 31088846; PMID: 31088846. doi:10.1158/2326-6066.CIR-18-0657.
  • McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula M, Venkateswaran G, Nemirovsky O, Gillespie JA, Karasinska JM, Kalloger SE, et al. Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology. 2019;157(3):823–37. PubMed PMID: 31078621; PMID: 31078621. doi:10.1053/j.gastro.2019.05.004.
  • Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf Dem Keller U, Leung S, Huntsman D, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–76. PubMed PMID: 21415165; PMID: 21415165. doi:10.1158/0008-5472.CAN-10-4261.
  • McIntyre A, Patiar S, Wigfield S, J-l L, Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clinical Cancer Research. 2012;18(11):3100–11. PMID: 22498007. doi:10.1158/1078-0432.Ccr-11-1877.
  • Zatovičová M, Tarábková K, Švastová E, Gibadulinová A, Mucha V, Jakubíčková L, Biesová Z, Rafajová M, Gut MO, Parkkila S, et al. Monoclonal antibodies generated in carbonic anhydrase IX-deficient mice recognize different domains of tumour-associated hypoxia-induced carbonic anhydrase IX. J Immunol Meth. 2003;282(1–2):117–34. PMID: 14604546. doi:10.1016/j.jim.2003.08.011.
  • Lenferink A, O’Connor MD, Marcil A, Durocher Y, inventorCARBONIC ANHYDRASE IX-SPECIFIC ANTIBODIES AND USES THEREOF patent WO2016/199097. 2016 15/12/2016.
  • Avvaru BS, Busby SA, Chalmers MJ, Griffin PR, Venkatakrishnan B, Agbandje-mckenna M, Silverman DN, McKenna R. Apo-human carbonic anhydrase II revisited: implications of the loss of a metal in protein structure, stability, and solvent network. Biochemistry. 2009;48(31):7365–72. doi:10.1021/bi9007512. PMID: 19583303.
  • Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, Chen D, Carrasquillo JA, Larson S, Bevan P, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31(2):187–94. PMID: 23213092. doi:10.1200/JCO.2011.41.2445.
  • Warnaar SO, Ullrich S. inventorsCO-ADMINISTRATION OF CG250 AND IL-2 OR IFN-ALPHA FOR TREATING CANCER SUCH AS RENAL CELL CARCINOMA. United States patent US 8,828,381 B2. 2014.
  • Wöhl T, Böttger V, inventorsBINDING EPITOPES FOR G250 ANTIBODY patent US 2014/0017252 A1. 2014.
  • Ciani L, Cecchi A, Temperini C, Supuran CT, Ristori S. Dissecting the inhibition mechanism of cytosolic versus transmembrane carbonic anhydrases by ESR. Journal of Physical Chemistry B. 2009;113(42):13998–4005. doi:10.1021/jp906593c. PMID: 19778001.
  • Sowole MA, Konermann L. Effects of protein-ligand interactions on hydrogen/deuterium exchange kinetics: canonical and noncanonical scenarios. Anal Chem. 2014;86(13):6715–22. doi:10.1021/ac501849n. PMID: 24904985.
  • Konermann L, Rodriguez AD, Sowole MA. Type 1 and Type 2 scenarios in hydrogen exchange mass spectrometry studies on protein-ligand complexes. Analyst. 2014;139(23):6078–87. doi:10.1039/c4an01307g. PubMed PMID: 25319399; PMID: 25319399.
  • Wildes D, Marqusee S. Hydrogen exchange and ligand binding: ligand-dependent and ligand-independent protection in the Src SH3 domain. Protein Sci. 2005;14(1):81–88. doi:10.1110/ps.04990205. PubMed PMID: 15576569; PMID: 15576569.
  • Percy AJ, Rey M, Burns KM, Schriemer DC. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry-A review. Anal Chim Acta. 2012;721:7–21. doi:10.1016/j.aca.2012.01.037. PMID: 22405295.
  • Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30(2):E9. doi:10.1093/nar/30.2.e9. PubMed PMID: 11788735; PMID: 11788735.
  • Tom R, Bisson L, Durocher Y. Culture of HEK293-EBNA1 cells for production of recombinant proteins. CSH Protoc. 2008;2008: pdb prot4976. doi:10.1101/pdb.prot4976. PubMed PMID: 21356792; PMID: 21356792.
  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol. 2003;21(2):163–70. PubMed PMID: 12536217; PMID: 12536217. doi:10.1038/nbt785.
  • Cochran JR, Kim YS, Olsen MJ, Bhandari R, Wittrup KD. Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods. 2004;287(1–2):147–58. doi:10.1016/j.jim.2004.01.024. PubMed PMID: 15099763; PMID: 15099763.
  • Rey M, Sarpe V, Burns KM, Buse J, Baker CA, Van Dijk M, Wordeman L, Bonvin AM, Schriemer DC. Mass spec studio for integrative structural biology. Structure. 2014;22(10):1538–48. doi:10.1016/j.str.2014.08.013. PubMed PMID: 25242457; PMID: 25242457.
  • Edwards LA, Woo J, Huxham LA, Verreault M, Dragowska WH, Chiu G, Rajput A, Kyle AH, Kalra J, Yapp D, et al. Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of Integrin-linked kinase (ILK). Mol Cancer Ther. 2008;7(1):59–70. PMID: 18202010. doi:10.1158/1535-7163.Mct-07-0329.
  • Lou Y, Preobrazhenska O, Auf Dem Keller U, Sutcliffe M, Barclay L, McDonald PC, Roskelley C, Overall CM, Dedhar S. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn. 2008;237(10):2755–68. doi:10.1002/dvdy.21658. PMID: 18773493.
  • Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J, Pastorekova S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 2014;4 JAN(January):1–14. doi:10.3389/fphys.2013.00400. PMID: 24409151.
  • Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Meth. 2019;16(7):595–602. PMID: 31249422. doi:10.1038/s41592-019-0459-y.