7,086
Views
17
CrossRef citations to date
0
Altmetric
Report

Multi-attribute Raman spectroscopy (MARS) for monitoring product quality attributes in formulated monoclonal antibody therapeutics

ORCID Icon, , , , , , , , , , , , , , ORCID Icon, , , , , , , , , , & show all
Article: 2007564 | Received 23 Sep 2021, Accepted 14 Nov 2021, Published online: 29 Dec 2021

References

  • de la Torre BG, Albericio F. The pharmaceutical industry in 2018. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2019;24(4):809. doi:10.3390/molecules24040809.
  • Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2019;37(1):9–12. doi:10.1016/j.tibtech.2018.05.014.
  • Gottschalk U, Brorson K, Shukla AA. The need for innovation in biomanufacturing. Nat Biotechnol. 2012;30(6):489–92. doi:10.1038/nbt.2263.
  • Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. MAbs. 2015;7(5):881–90. doi:10.1080/19420862.2015.1069454.
  • Rogers RS, Abernathy M, Richardson DD, Rouse JC, Sperry JB, Swann P, Wypych, J, Yu, C, Zang, L, and Deshpande, R, et al. AView on the importance of “Multi-Attribute Method” for measuring purity of biopharmaceuticals and improving overall control strategy. Aaps J . 2018;20(1):1–8.
  • Wen ZQ, Cao XL, Li GY, Ren D. Industrial application of raman spectroscopy in protein pharmaceutical manufacturing. Aip Conf Proc. 2010;1267:718–19.
  • Krishnan RS, Shankar RK. Raman effect - History of the discovery. J Raman Spectrosc. 1981;10:1–8. doi:10.1002/jrs.1250100103.
  • Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–02. doi:10.1038/121501c0.
  • Goetz MJ Jr., Cote GL, Erckens R, March W, Motamedi M. Application of a multivariate technique to Raman spectra for quantification of body chemicals. IEEE Trans Biomed Eng. 1995;42(7):728–31. doi:10.1109/10.391172.
  • Rohleder D, Kiefer W, Petrich W. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy. Analyst. 2004;129(10):906–11. doi:10.1039/b408927h.
  • Wei D, Chen S, Liu Q. Review of fluorescence suppression techniques in Raman Spectroscopy. Appl Spectrosc Rev. 2015;50(5):387–406. doi:10.1080/05704928.2014.999936.
  • Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem. 2017;409(3):637–49. doi:10.1007/s00216-016-9824-1.
  • Ashton L, Xu Y, Brewster VL, Cowcher DP, Sellick CA, Dickson AJ, Stephens GM, Goodacre R. The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst. 2013;138(22):6977–85. doi:10.1039/c3an01341c.
  • Li B, Ryan PW, Ray BH, Leister KJ, Sirimuthu NMS, Ryder AG. Rapid characterization and quality control of complex cell culture media solutions using raman spectroscopy and chemometrics. Biotechnol Bioeng. 2010;107(2):290–301. doi:10.1002/bit.22813.
  • Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng. 2011;108(5):1215–21. doi:10.1002/bit.23023.
  • Kozma B, Hirsch E, Gergely S, Parta L, Pataki H, Salgo A. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: comparative scalability test with a shake flask model system. J Pharm Biomed Anal. 2017;145:346–55. doi:10.1016/j.jpba.2017.06.070.
  • Shah NC, Lyandres O, Walsh JT Jr., Glucksberg MR, Van Duyne RP. Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy. Anal Chem. 2007;79:6927–32. doi:10.1021/ac0704107.
  • Andre S, Saint Cristau L, Gaillard S, Devos O, Calvosa E, Duponchel L. In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy. Anal Chim Acta. 2015;892:148–52. doi:10.1016/j.aca.2015.08.050.
  • Li MY, Ebel B, Paris C, Chauchard F, Guedon E, Marc A. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Biotechnol Prog. 2018;34:486–93. doi:10.1002/btpr.2604.
  • Paidi SK, Siddhanta S, Strouse R, McGivney JB, Larkin C, Barman I. Rapid identification of biotherapeutics with label-free Raman spectroscopy. Anal Chem. 2016;88:4361–68. doi:10.1021/acs.analchem.5b04794.
  • Le LMM, Kegl B, Gramfort A, Marini C, Nguyen D, Cherti M, Tfaili S, Tfayli A, Baillet-Guffroy A, Prognon P, et al. Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach. Talanta. 2018;184:260–65. doi:10.1016/j.talanta.2018.02.109.
  • de la Cuesta RG, Goodacre R, Ashton L. Monitoring antibody aggregation in early drug development using raman spectroscopy and perturbation-correlation moving windows. Anal Chem. 2014;86:11133–40.
  • Zhang C, Springall JS, Wang X, Barman I. Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy. Anal Chim Acta. 2019;1081:138–45. doi:10.1016/j.aca.2019.07.007.
  • Ettah I, Ashton L. Engaging with Raman spectroscopy to investigate antibody aggregation. Antibodies (Basel). 2018;7. doi:10.3390/antib7030024.
  • Balakrishnan G, Barnett GV, Kar SR, Das TK. Detection and identification of the vibrational markers for the quantification of methionine oxidation in therapeutic proteins. Anal Chem. 2018;90(11):6959–66. doi:10.1021/acs.analchem.8b01238.
  • Ota C, Noguchi S, Nagatoishi S, Tsumoto K. Assessment of the protein-protein interactions in a highly concentrated antibody solution by using raman spectroscopy. Pharm Res. 2016;33:956–69. doi:10.1007/s11095-015-1842-8.
  • Bueno J, Long D, Kauffman JF, Arzhantsev S. Deep-Ultraviolet Resonance Raman (DUVRR) Spectroscopy Of Therapeutic Monoclonal Antibodies Subjected To Thermal Stress. Anal Chem. 2015;87:7880–86. doi:10.1021/acs.analchem.5b01606.
  • McAvan BS, Bowsher LA, Powell T, O’Hara JF, Spitali M, Goodacre R, Doig AJ. Raman spectroscopy to monitor post-translational modifications and degradation in monoclonal antibody therapeutics. Anal Chem. 2020;92(15):10381–89. doi:10.1021/acs.analchem.0c00627.
  • Degardin K, Roggo Y, Been F, Margot P. Detection and chemical profiling of medicine counterfeits by Raman spectroscopy and chemometrics. Anal Chim Acta. 2011;705(1–2):334–41. doi:10.1016/j.aca.2011.07.043.
  • Degardin K, Guillemain A, Roggo Y. Comprehensive study of a handheld Raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J Spectrosc. 2017;2017:1–13. doi:10.1155/2017/3154035.
  • Wabuyele BW, Sotthivirat S, Zhou GX, Ash J, Dhareshwar SS. Dispersive Raman spectroscopy for quantifying amorphous drug content in intact tablets. J Pharm Sci. 2017;106(2):579–88. doi:10.1016/j.xphs.2016.10.014.
  • Inoue M, Osada T, Hisada H, Koide T, Fukami T, Roy A, Carriere, J, and Heyler, R. Solid-state quantification of cocrystals in pharmaceutical tablets using transmission low-frequency Raman spectroscopy. Anal Chem. 2019;91(21):13427–32. doi:10.1021/acs.analchem.9b01895.
  • Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39. doi:10.1021/ac60214a047.
  • Karow AR, Bahrenburg S, Garidel P. Buffer capacity of biologics–from buffer salts to buffering by antibodies. Biotechnol Prog. 2013;29:480–92. doi:10.1002/btpr.1682.
  • Ali N, Girnus S, Rosch P, Popp J, Bocklitz T. Sample-size planning for multivariate data: a raman-spectroscopy-based example. Anal Chem. 2018;90(21):12485–92. doi:10.1021/acs.analchem.8b02167.
  • Guyon I. A scaling law for the validation-set training-set size ratio. 1997; (AT&T Bell Laboratories)
  • Dion MZ, Leiske D, Sharma VK, Zuch de Zafra CL, Salisbury CM. Mitigation of oxidation in therapeutic antibody formulations: a biochemical efficacy and safety evaluation of N-Acetyl-tryptophan and L-methionine. Pharm Res. 2018;35:222. doi:10.1007/s11095-018-2467-5.
  • Takeuchi H, Harada I. Normal coordinate analysis of the indole ring. Spectrochim Acta A. 1986;42(9):1069–78. doi:10.1016/0584-8539(86)80021-6.
  • Mesu JG, Visser T, Soulimani F, Weckhuysen BM. Infrared and Raman spectroscopic study of pH-induced structural changes of L-histidine in aqueous environment. Vib Spectrosc. 2005;39(1):114–25. doi:10.1016/j.vibspec.2005.01.003.
  • Dotlich MA, Giri I. Developing portable Raman spectroscopy methods for identification of raw materials used in pharmaceutical development and manufacturing. Spectroscopy-Us. 2017;32:52–64.
  • Saggu M, Liu J, Patel A. Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway. Pharm Res. 2015;32(9):2877–88. doi:10.1007/s11095-015-1670-x.
  • Li CH, Li TS. Application of vibrational spectroscopy to the structural characterization of monoclonal antibody and its aggregate. Curr Pharm Biotechno. 2009;10(4):391–99. doi:10.2174/138920109788488950.
  • Barnett GV, Qi W, Amin S, Lewis EN, Razinkov VI, Kerwin BA, Liu, Y, and Roberts, CJ. Structural changes and aggregation mechanisms for anti-streptavidin IgG1 at elevated concentration. J Phys Chem B. 2015;119(49):15150–63. doi:10.1021/acs.jpcb.5b08748.
  • Ota C, Noguchi S, Tsumoto K. The molecular interaction of a protein in highly concentrated solution investigated by Raman spectroscopy. Biopolymers. 2015;103:237–46.
  • Zhou C, Qi W, Lewis EN, Carpenter JF. Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Anal Biochem. 2015;472:7–20. doi:10.1016/j.ab.2014.11.016.
  • Hensel M, Steurer R, Fichtl J, Elger C, Wedekind F, Petzold A, Schlothauer T, Molhoj M, Reusch D, Bulau P, et al. Identification of potential sites for tryptophan oxidation in recombinant antibodies using tert-butylhydroperoxide and quantitative LC-MS. PLoS One. 2011;6(3):e17708. doi:10.1371/journal.pone.0017708.
  • FDA. Development and submission of near infrared analytical procedures-guidance for industry. MD (USA): FDA Office Publisher: Silver Spring; 2015.
  • EMA. Guideline on the use of near infrared spectroscopy by the pharmaceutical industry and the data requirements for new submissions and variations. 2014.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–98. doi:10.1038/nbt1026.
  • Team RC. R: a language and environment for statistical computing. Vienna (Austria); 2013.