6,415
Views
17
CrossRef citations to date
0
Altmetric
Review

A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2079449 | Received 18 Feb 2022, Accepted 16 May 2022, Published online: 14 Jun 2022

References

  • London ES. Der gegenwärtige Stand der Lehre von den Cytolysinen und die cytolytische Theorie der Immunität. Zentralbl f Bakteriol, Parasitenk u Infekt Abt II, Bd. 1902;32:48–17.
  • Lindenmann J. Origin of the terms “antibody” and “antigen”. Scand J Immunol. 1984;19(4):281–85. PMID: 6374880. doi:10.1111/j.1365-3083.1984.tb00931.x.
  • Marks C, Deane CM. How repertoire data are changing antibody science. J Biol Chem. 2020;295(29):9823–37. PMID: 32409582. doi:10.1074/jbc.rev120.010181.
  • Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B, Deane CM. Thera-SAbDab: the Therapeutic Structural Antibody Database. Nucleic Acids Res. 2020;48(D1):D383–D388. PMID: 31555805. doi:10.1093/nar/gkz827.
  • Kaplon H, Reichert JM. Antibodies to watch in 2021. MAbs. 2021;13(1). PMID: 33459118. doi:10.1080/19420862.2020.1860476.
  • Singh S, Kumar NK, Dwiwedi P, Charan J, Kaur R, Sidhu P, Chugh VK. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13(2):85–99. PMID: 28799485. doi:10.2174/1574884712666170809124728.
  • Schroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2):S41–S52. PMID: 20176268. doi:10.1016/j.jaci.2009.09.046.
  • Bornholdt ZA, Turner HL, Murin CD, Li W, Sok D, Souders CA, Piper AE, Goff A, Shamblin JD, Wollen SE, et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science. 2016;351(6277):1078–83. PMID: 26912366. doi:10.1126/science.aad5788.
  • Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M, et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science. 2016;351(6279):1339–42. PMID: 26917593. doi:10.1126/science.aad5224.
  • Valgardsdottir R, Cattaneo I, Napolitano G, Raglio A, Spinelli O, Salmoiraghi S, Castilletti C, Lapa D, Capobianchi MR, Farina C, et al. Identification of human SARS-CoV-2 monoclonal antibodies from convalescent patients using EBV immortalization. Antibodies. 2021;10(3):26. PMID: 34287229. doi:10.3390/antib10030026.
  • Schroeder HW Jr. Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Dev Comp Immunol. 2006;30(1–2):119–35. PMID: 16083957. doi:10.1016/j.dci.2005.06.006.
  • Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature. 2019;566(7744):393–97. PMID: 30664748. doi:10.1038/s41586-019-0879-y.
  • Hom JR, Tomar D, Tipton CM. Exploring the Diversity of the B-Cell Receptor Repertoire Through High-Throughput Sequencing. In: Rast J, Buckley K,editors. Methods in Molecular Biology: Immune Receptors. Vol. 2421. Clifton (NJ):Humana; 2022. p. 231–41. PMID: 34870823. doi:10.1007/978-1-0716-1944-5_16
  • Altelaar AFM, Munoz J, Heck AJR. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14(1):35–48. PMID: 23207911. doi:10.1038/nrg3356.
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55. PMID: 27629641. doi:10.1038/nature19949.
  • Sen KI, Tang WH, Nayak S, Kil YJ, Bern M, Ozoglu B, Ueberheide B, Davis D, Becker C. Automated antibody de novo sequencing and its utility in biopharmaceutical discovery. J Am Soc Mass Spectrom. 2017;28(5):803–10. PMID: 28105549. doi:10.1007/s13361-016-1580-0.
  • Peng W, Pronker MF, Snijder J. Mass Spectrometry-Based de novo sequencing of monoclonal antibodies using multiple proteases and a dual fragmentation scheme. J Proteome Res. 2021;20(7):3559–66. PMID: 34121409. doi:10.1021/acs.jproteome.1c00169.
  • Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, et al. Interlaboratory study for characterizing monoclonal antibodies by Top-Down and Middle-Down mass spectrometry. J Am Soc Mass Spectrom. 2020;31(9):1783–802. PMID: 32812765. doi:10.1021/jasms.0c00036.
  • Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019;8(4):55. PMID: 31816964. doi:10.3390/antib8040055.
  • Lefranc MP. IMGT, the international ImMunoGeneTics database®. Nucleic Acids Res. 2003;31(1):307–10. PMID: 9847182. doi:10.1093/nar/gkg085.
  • Lefranc M-P, Lefranc G. Immunoglobulins or Antibodies: IMGT® Bridging Genes, Structures and Functions. Biomedicines. 2020;8(9):319. PMID: 32878258. doi:10.3390/biomedicines8090319.
  • Porter RR. The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem J. 1959;73(1):119–27. PMID: 14434282. doi:10.1042/bj0730119.
  • Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature. 2003;423(6940):614–20. PMID: 12768205. doi:10.1038/nature01685.
  • Charles A, Janeway J, Travers P, Walport M, Shlomchik MJ. The generation of diversity in immunoglobulins. In: Immunobiology: the immune system in health and disease, 5th. New York (NY): Garland Science; 2001. https://www.ncbi.nlm.nih.gov/books/NBK27140/
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The Generation of Antibody Diversity. In: Molecular Biology of the Cell, 4th. New York (NY): Garland Science; 2002. https://www.ncbi.nlm.nih.gov/books/NBK26860/
  • Jeske DJ, Jarvis J, Milstein C, Capra JD. Junctional diversity is essential to antibody activity. J Immunol. 1984;133(3):1090–92. PMID: 6747289.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207. PMID: 12634793. doi:10.1038/nature01511.
  • Tran NH, Rahman MZ, He L, Xin L, Shan B, Li M. Complete De Novo Assembly of Monoclonal Antibody Sequences. Sci Rep. 2016;6(1):31730. PMID: 27562653. doi:10.1038/srep31730.
  • Guthals A, Clauser KR, Bandeira N. Shotgun protein sequencing with Meta-contig assembly. Mol Cell Proteomics. 2012;11(10):1084–96. PMID: 22798278. doi:10.1074/mcp.M111.015768.
  • Donnelly DP, Rawlins CM, DeHart CJ, Fornelli L, Schachner LF, Lin Z, Lippens JL, Aluri KC, Sarin R, Chen B, et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods. 2019;16(7):587–94. PMID: 31249407. doi:10.1038/s41592-019-0457-0.
  • Bondt A, Hoek M, Tamara S, de Graaf B, Peng W, Schulte D, van Rijswijck DMH, den Boer MA, Greisch JF, Varkila MRJ, et al. Human plasma IgG1 repertoires are simple, unique, and dynamic. Cell Syst. 2021;12(12):1131–43. PMID: 34613904. doi:10.1016/j.cels.2021.08.008.
  • Guthals A, Gan Y, Murray L, Chen Y, Stinson J, Nakamura G, Lill JR, Sandoval W, Bandeira N. De novo MS/MS sequencing of native human antibodies. J Proteome Res. 2017;16(1):45–54. PMID: 27779884. doi:10.1021/acs.jproteome.6b00608.
  • Toby TK, Fornelli L, Kelleher NL. Progress in Top-Down Proteomics and the Analysis of Proteoforms. Annu Rev Anal Chem. 2016;9(1):499–519. PMID: 27306313. doi:10.1146/annurev-anchem-071015-041550.
  • Compton PD, Zamdborg L, Thomas PM, Kelleher NL. On the scalability and requirements of whole protein mass spectrometry. Anal Chem. 2011;83(17):6868–74. PMID: 21744800. doi:10.1021/ac2010795.
  • Johansson BP, Shannon O, Björck L. IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One. 2008;3(2):e1692. PMID: 18301769. doi:10.1371/journal.pone.0001692.
  • Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO. Middle-Down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. Anal Chem. 2014;86(6):3005–12. PMID: 24588056. doi:10.1021/ac4036857.
  • Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9(3):1165–72. PMID: 2566907. doi:10.1128/mcb.9.3.1165-1172.1989.
  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–89. PMID: 1350088. doi:10.1073/pnas.89.10.4285.
  • Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-tac to zenapax. Methods. 2005;36(1):69–83. PMID: 15848076. doi:10.1016/j.ymeth.2005.01.007.
  • Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3(1):36. PMID: 26288737. doi:10.1186/s40425-015-0078-9.
  • Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Della Cioppa G, van As A, Gupta N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90. PMID: 11496232. doi:10.1067/mai.2001.117880.
  • Presta LG, Lahr SJ, Shields RL, Porter JP, Gorman CM, Fendly BM, Jardieu PM. Humanization of an antibody directed against IgE. J Immunol. 1993;151(5):2623–32. PMID: 8360482.
  • R-M L, Hwang Y-C, Liu I-J, Lee -C-C, Tsai H-Z, H-J L, H-C W. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. PMID: 31894001. doi:10.1186/s12929-019-0592-z.
  • Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol. 2014;32(2):158–68. PMID: 24441474. doi:10.1038/nbt.2782.
  • Morsa D, Baiwir D, La Rocca R, Zimmerman TA, Hanozin E, Grifnée E, Longuespée R, Meuwis M-A, Smargiasso N, De PE, et al. Multi-Enzymatic limited digestion: the Next-Generation sequencing for proteomics?. J Proteome Res. 2019;18(6):2501–13. PMID: 31046285. doi:10.1021/acs.jproteome.9b00044.
  • Bandeira N, Pham V, Pevzner P, Arnott D, Lill JR. Beyond edman degradation: automated de novo protein sequencing of monoclonal antibodies. Nat Biotechnol. 2008;26(12):1336–38. PMID: 19060866. doi:10.1038/nbt1208-1336.
  • Castellana NE, Pham V, Arnott D, Lill JR, Bafna V. Template Proteogenomics: Sequencing Whole Proteins Using an Imperfect Database. Mol Cell Proteomics. 2010;9(6):1260–70. PMID: 20164058. doi:10.1074/mcp.M900504-MCP200.
  • Savidor A, Barzilay R, Elinger D, Yarden Y, Lindzen M, Gabashvili A, Adiv Tal O, Levin Y. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination. Mol Cell Proteomics. 2017;16(6):1151–61. PMID: 28348172. doi:10.1074/mcp.O116.065417.
  • Tran NH, Rahman MZ, He L, Xin L, Shan B, Li M. Complete de novo assembly of monoclonal antibody sequences. Sci Rep. 2016;6(31730):1–10. PMID: 27562653. doi:10.1038/srep31730.
  • Liu X, Han Y, Yuen D, Ma B. Automated protein (re)sequencing with MS/MS and a homologous database yields almost full coverage and accuracy. Bioinformatics. 2009;25(17):2174–80. PMID: 19535534. doi:10.1093/bioinformatics/btp366.
  • Brodbelt JS. Ion activation methods for peptides and proteins. Anal Chem. 2016;88(1):30–51. PMID: 26630359. doi:10.1021/acs.analchem.5b04563.
  • Brodbelt JS, Morrison LJ, Santos I. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem Rev. 2020;120(7):3328–80. PMID: 31851501. doi:10.1021/acs.chemrev.9b00440.
  • He L, Weisbrod CR, Marshall AG. Protein de novo sequencing by top-down and middle-down MS/MS: limitations imposed by mass measurement accuracy and gaps in sequence coverage. Int J Mass Spectrom. 2018;427:107–13. doi:10.1016/j.ijms.2017.11.012.
  • Macias LA, Santos IC, Brodbelt JS. Ion Activation Methods for Peptides and Proteins. Anal Chem. 2020;92(1):227–51. PMID: 31665881. doi:10.1021/acs.analchem.9b04859.
  • Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984;11(11):601. PMID: 6525415. doi:10.1002/bms.1200111109.
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci. 2004;101(26):9528–33. PMID: 15210983. doi:10.1073/pnas.0402700101.
  • Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal Chem. 2000;72(3):563–73. PMID: 10695143. doi:10.1021/ac990811p.
  • McLuckey SA, Stephenson JL. Ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom Rev. 1998;17(6):369–407. PMID: 10360331. doi:10.1002/(SICI)1098-2787.
  • Xiao Y, Vecchi MM, Wen D. Distinguishing between leucine and isoleucine by integrated LC-MS analysis using an orbitrap fusion mass spectrometer. Anal Chem. 2016;88(21):10757–66. PMID: 27704771. doi:10.1021/acs.analchem.6b03409.
  • Kjeldsen F, Haselmann KF, Sørensen ES, Zubarev RA. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (Hot) electron capture dissociation in fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2003;75(6):1267–74. doi:10.1021/ac020422m.
  • Horn DM, Zubarev RA, McLafferty FW. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc Natl Acad Sci. 2000;97(19):10313–17. PMID: 10984529. doi:10.1073/pnas.97.19.10313.
  • Guthals A, Clauser KR, Frank AM, Bandeira N. Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res. 2013;12(6):2846–57. PMID: 23679345. doi:10.1021/pr400173d.
  • Vyatkina K. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence. Proteomes. 2017;5(1):6. PMID: 28248257. doi:10.3390/proteomes5010006.
  • Datta R, Bern M. Spectrum fusion: using multiple mass spectra for de novo peptide sequencing. J Comput Biol. 2009;16(8):1169–82. PMID: 19645594. doi:10.1089/cmb.2009.0122.
  • Horton AP, Robotham SA, Cannon JR, Holden DD, Marcotte EM, Brodbelt JS. Comprehensive de Novo Peptide Sequencing from MS/MS Pairs Generated through Complementary Collision Induced Dissociation and 351 nm Ultraviolet Photodissociation. Anal Chem. 2017;89(6):3747–53. doi:10.1021/acs.analchem.7b00130.
  • Bertsch A, Leinenbach A, Pervukhin A, Lubeck M, Hartmer R, Baessmann C, Elnakady YA, Müller R, Böcker S, Huber CG, et al. De novo peptide sequencing by tandem MS using complementary CID and electron transfer dissociation. Electrophoresis. 2009;30(21):3736–47. PMID: 19862751. doi:10.1002/elps.200900332.
  • Schmelter C, Perumal N, Funke S, Bell K, Pfeiffer N, Grus FH. Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet. 2017;26(22):4451–64. PMID: 29036575. doi:10.1093/hmg/ddx332.
  • Singh V, Stoop MP, Stingl C, Luitwieler RL, Dekker LJ, van Duijn MM, Kreft KL, Luider TM, Hintzen RQ. Cerebrospinal-fluid-derived immunoglobulin g of different multiple sclerosis patients shares mutated sequences in complementarity determining regions. Mol Cell Proteomics. 2013;12(12):3924–34. PMID: 23970564. doi:10.1074/mcp.M113.030346.
  • Broodman I, de Costa D, Stingl C, Dekker LJM, VanDuijn MM, Lindemans J, van Klaveren RJ, Luider TM. Mass spectrometry analyses of κ and λ fractions result in increased number of complementarity-determining region identifications. Proteomics. 2012;12(2):183–91. PMID: 22120973. doi:10.1002/pmic.201100244.
  • de Costa D, Broodman I, VanDuijn MM, Stingl C, Dekker LJM, Burgers PC, Hoogsteden HC, Sillevis Smitt PAE, van Klaveren RJ, Luider TM. Sequencing and Quantifying IgG Fragments and Antigen-Binding Regions by Mass Spectrometry. J Proteome Res. 2010;9(6):2937–45. PMID: 20387908. doi:10.1021/pr901114w.
  • Tamara S, den Boer MA, Heck AJR. High-resolution native mass spectrometry. Chem Rev. 2021;122(8):7269–326. PMID: 34415162. doi:10.1021/acs.chemrev.1c00212.
  • Lössl P, Snijder J, Heck AJR. Boundaries of mass resolution in native mass spectrometry. J Am Soc Mass Spectrom. 2014;25(6):906–17. PMID: 24700121. doi:10.1007/s13361-014-0874-3.
  • Mao Y, Valeja SG, Rouse JC, Hendrickson CL, Marshall AG. Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation-fourier transform ion cyclotron resonance-mass spectrometry. Anal Chem. 2013;85(9):4239–46. PMID: 23551206. doi:10.1021/ac303525n.
  • Tsybin YO, Fornelli L, Stoermer C, Luebeck M, Parra J, Nallet S, Wurm FM, Hartmer R. Structural Analysis of Intact Monoclonal Antibodies by Electron Transfer Dissociation Mass Spectrometry. Anal Chem. 2011;83(23):8919–27. PMID: 22017162. doi:10.1021/ac201293m.
  • Resemann A, Jabs W, Wiechmann A, Wagner E, Colas O, Evers W, Belau E, Vorwerg L, Evans C, Beck A, et al. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. MAbs. 2016;8(2):318–30. PMID: 26760197. doi:10.1080/19420862.2015.1128607.
  • Greisch J-F, den Boer MA, Beurskens F, Schuurman J, Tamara S, Bondt A, Heck AJR. Generating informative sequence tags from Antigen-Binding regions of heavily glycosylated IgA1 antibodies by native Top-Down electron capture dissociation. J Am Soc Mass Spectrom. 2021;32(6):1326–35. PMID: 33570406. doi:10.1021/jasms.0c00461.
  • den Boer MA, Greisch J-F, Tamara S, Bondt A, Heck AJR. Selectivity over coverage in de novo sequencing of IgGs. Chem Sci. 2020;11(43):11886–96. PMID: 33520151. doi:10.1039/d0sc03438j.
  • Greisch J-F, den Boer MA, Lai S-H, Gallagher K, Bondt A, Commandeur J, Heck AJR. Extending native Top-Down electron capture dissociation to MDa immunoglobulin complexes provides useful sequence tags covering their critical variable Complementarity-Determining regions. Anal Chem. 2021;93(48):16068–75. PMID: 34813704. doi:10.1021/acs.analchem.1c03740.
  • Spoerry C, Seele J, Valentin-Weigand P, Baums CG, von Pawel-Rammingen U. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG. J Biol Chem. 2016;291(15):7915–25. PMID: 26861873. doi:10.1074/jbc.M115.711440.
  • Lermyte F, Tsybin YO, O’Connor PB, Loo JA. Top or middle? Up or down? Toward a standard lexicon for protein Top-Down and allied mass spectrometry approaches. J Am Soc Mass Spectrom. 2019;30(7):1149–57. PMID: 31073892. doi:10.1007/s13361-019-02201-x.
  • Fornelli L, Damoc E, Thomas PM, Kelleher NL, Aizikov K, Denisov E, Makarov A, Tsybin YO. Analysis of Intact Monoclonal Antibody IgG1 by Electron Transfer Dissociation Orbitrap FTMS. Mol Cell Proteomics. 2012;11(12):1758–67. PMID: 22964222. doi:10.1074/mcp.M112.019620.
  • Fornelli L, Ayoub D, Aizikov K, Liu X, Damoc E, Pevzner PA, Makarov A, Beck A, Tsybin YO. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field orbitrap mass spectrometer. J Proteomics. 2017;159:67–76. PMID: 28242452. doi:10.1016/j.jprot.2017.02.013.
  • Fornelli L, Srzentić K, Huguet R, Mullen C, Sharma S, Zabrouskov V, Fellers RT, Durbin KR, Compton PD, Kelleher NL. Accurate Sequence Analysis of a Monoclonal Antibody by Top-Down and Middle-Down Orbitrap Mass Spectrometry Applying Multiple Ion Activation Techniques. Anal Chem. 2018;90(14):8421–29. PMID: 29894161. doi:10.1021/acs.analchem.8b00984.
  • Shaw JB, Liu W, V VY, Bracken CC, Malhan N, Guthals A, Beckman JS, Voinov VG. Direct determination of antibody chain pairing by Top-down and Middle-down mass spectrometry using electron capture dissociation and ultraviolet photodissociation. Anal Chem. 2020;92(1):766–73. PMID: 31769659. doi:10.1021/ACS.ANALCHEM.9B03129.
  • Shaw JB, Malhan N, Vasil’Ev YV, Lopez NI, Makarov A, Beckman JS, Voinov VG. Sequencing grade tandem mass spectrometry for Top-Down proteomics using hybrid electron capture dissociation methods in a benchtop orbitrap mass spectrometer. Anal Chem. 2018;90(18):10819–27. PMID: 30118589. doi:10.1021/ACS.ANALCHEM.8B01901.
  • Shen Y, Tolić N, Piehowski PD, Shukla AK, Kim S, Zhao R, Qu Y, Robinson E, Smith RD, Paša-Tolić L. High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics. J Chromatogr A. 2017;1498:99–110. PMID: 28077236. doi:10.1016/j.chroma.2017.01.008.
  • Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(20):2337–42. PMID: 14558135. doi:10.1002/rcm.1196.
  • Vyatkina K, Wu S, Dekker LJM, VanDuijn MM, Liu X, Tolić N, Dvorkin M, Alexandrova S, Luider TM, Paša-Tolić L, et al. De Novo Sequencing of Peptides from Top-Down Tandem Mass Spectra. J Proteome Res. 2015;14(11):4450–62. PMID: 26412692. doi:10.1021/pr501244v.
  • Liu X, Dekker LJM, Wu S, Vanduijn MM, Luider TM, Tolić N, Kou Q, Dvorkin M, Alexandrova S, Vyatkina K, et al. De Novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. J Proteome Res. 2014;13(7):3241–48. PMID: 24874765. doi:10.1021/pr401300m.
  • Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol. 2015;24:112–20. PMID: 25461729. doi:10.1016/j.cbpa.2014.11.007.
  • Lavinder JJ, Wine Y, Giesecke C, Ippolito GC, Horton AP, Lungu OI, Hoi KH, DeKosky BJ, Murrin EM, Wirth MM, et al. Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci. 2014;111(6):2259–64. PMID: 24469811. doi:10.1073/pnas.1317793111.
  • Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C, Leung K, Horton AP, DeKosky BJ, Lee CH, Lavinder JJ, et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med. 2016;22(12):1456–64. PMID: 27820605. doi:10.1038/nm.4224.
  • Lee J, Paparoditis P, Horton AP, Frühwirth A, McDaniel JR, Jung J, Boutz DR, Hussein DA, Tanno Y, Pappas L, et al. Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations. Cell Host Microbe. 2019;25(3):367–376.e5. PMID: 30795981. doi:10.1016/j.chom.2019.01.010.
  • Bonissone SR, Lima T, Harris K, Davison L, Avanzino B, Trinklein N, Castellana N, Patel A. Serum proteomics expands on high-affinity antibodies in immunized rabbits than deep B-cell repertoire sequencing alone. bioRxiv. 2020:833871. doi:10.1101/833871.
  • Gilchuk P, Guthals A, Bonissone SR, Shaw JB, Ilinykh PA, Huang K, Bombardi RG, Liang J, Grinyo A, Davidson E, et al. Proteo-Genomic analysis identifies two major sites of vulnerability on ebolavirus glycoprotein for neutralizing antibodies in convalescent human plasma. Front Immunol. 2021;12:706757. PMID: 34335620. doi:10.3389/fimmu.2021.706757.
  • Cha SW, Bonissone S, Na S, Pevzner PA, Bafna V. The antibody repertoire of colorectal cancer. Mol Cell Proteomics. 2017;16(12):2111–24. PMID: 29046389. doi:10.1074/mcp.ra117.000397.
  • Safonova Y, Bonissone S, Kurpilyansky E, Starostina E, Lapidus A, Stinson J, DePalatis L, Sandoval W, Lill J, Pevzner PA. IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis. Bioinformatics. 2015;31(12):i53–i61. PMID: 26072509. doi:10.1093/bioinformatics/btv238.
  • Bonissone SR, Pevzner PA. Immunoglobulin classification using the colored antibody graph. J Comput Biol. 2016;23(6):483–94. PMID: 27149636. doi:10.1089/cmb.2016.0010.
  • He L, Anderson LC, Barnidge DR, Murray DL, Hendrickson CL, Marshall AG. Analysis of monoclonal antibodies in human serum as a model for clinical monoclonal gammopathy by use of 21 tesla FT-ICR top-down and middle-down MS/MS. J Am Soc Mass Spectrom. 2017;28(5):827–38. PMID: 28247297. doi:10.1007/s13361-017-1602-6.
  • He L, Anderson LC, Barnidge DR, Murray DL, Dasari S, Dispenzieri A, Hendrickson CL, Marshall AG. Classification of plasma cell disorders by 21 tesla fourier transform ion cyclotron resonance top-down and middle-down MS/MS analysis of monoclonal immunoglobulin light chains in human serum. Anal Chem. 2019;91(5):3263–69. PMID: 30801187. doi:10.1021/acs.analchem.8b03294.
  • Mills JR, Barnidge DR, Murray DL. Detecting monoclonal immunoglobulins in human serum using mass spectrometry. Methods. 2015;81:56–65. PMID: 25916620. doi:10.1016/j.ymeth.2015.04.020.
  • Sharpley FA, Manwani R, Mahmood S, Sachchithanantham S, Lachmann HJ, Gillmore JD, Whelan CJ, Fontana M, Hawkins PN, Wechalekar AD. A novel mass spectrometry method to identify the serum monoclonal light chain component in systemic light chain amyloidosis. Blood Cancer J. 2019;9(2):16. PMID: 30718462. doi:10.1038/s41408-019-0180-1.
  • Dupré M, Duchateau M, Sternke-Hoffmann R, Boquoi A, Malosse C, Fenk R, Haas R, Buell AK, Rey M, Chamot-Rooke J. De Novo Sequencing of antibody light chain proteoforms from patients with multiple myeloma. Anal Chem. 2021;93(30):10627–34. PMID: 34292722. doi:10.1021/acs.analchem.1c01955.
  • Wang Z, Liu X, Muther J, James JA, Smith K, Wu S. Top-down mass spectrometry analysis of human serum autoantibody antigen-binding fragments. Sci Rep. 2019;9(1):2345. PMID: 30787393. doi:10.1038/s41598-018-38380-y.
  • Melani RD, Des Soye BJ, Kafader JO, Forte E, Hollas M, Blagojevic V, Negrão F, McGee JP, Drown B, Lloyd-Jones C, et al. Next-generation serology by mass spectrometry: readout of the SARS-CoV-2 antibody repertoire. J Proteome Res. 2022;21(1):274–88. PMID: 34268518. doi:10.1021/acs.jproteome.1c00882.
  • Kafader JO, Melani RD, Durbin KR, Ikwuagwu B, Early BP, Fellers RT, Beu SC, Zabrouskov V, Makarov AA, Maze JT, et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat Methods. 2020;17(4):391–94. PMID: 32123391. doi:10.1038/s41592-020-0764-5.
  • Kitaura K, Yamashita H, Ayabe H, Shini T, Matsutani T, Suzuki R. Different somatic hypermutation levels among antibody subclasses disclosed by a new next-generation sequencing-based antibody repertoire analysis. Front Immunol. 2017;8:389. PMID: 28515723. doi:10.3389/fimmu.2017.00389.
  • Bondt A, Dingess KA, Hoek M, van Rijswijck DMH, Heck AJR. A direct ms-based approach to profile human milk secretory immunoglobulin A (IgA1) reveals donor-specific clonal repertoires with high longitudinal stability. Front Immunol. 2021;12:5190. PMID: 34938298. doi:10.3389/fimmu.2021.789748.
  • de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology. 2020;30(4):226–40. PMID: 29958069. doi:10.1093/glycob/cwz048.
  • Yan Q, Huang M, Lewis MJ, Hu P. Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs. 2018;10(6):901–12. PMID: 29958069. doi:10.1080/19420862.2018.1478646
  • Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of recombinant antibodies: analytics and functional impact. Biotechnol J. 2018;13(1):1700476. PMID: 28862393.doi:10.1002/biot.201700476.
  • Aristotle. Metaphysics. In: Ross WD, editor. Metaphysics. Vol. VIII. Oxford (UK): Clarendon Press; 1908. p. 1045a.8–10.
  • Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021;20(7):491–95. PMID: 33953368.doi:10.1038/d41573-021-00079-7.