2,397
Views
4
CrossRef citations to date
0
Altmetric
Report

Unambiguous identification of α-Gal epitopes in intact monoclonal antibodies by NMR spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2132977 | Received 05 May 2022, Accepted 03 Oct 2022, Published online: 14 Oct 2022

References

  • Macher BA, Galili U. The Gal alpha 1,3Gal beta 1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. BBA-Gen Subjects. 2008;1780:75–15. doi:10.1016/j.bbagen.2007.11.003.
  • Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human-Igg antibody with anti-Alpha-Galactosyl specificity. J Exp Med. 1984;160:1519–31. doi:10.1084/jem.160.5.1519.
  • Galili U. Biosynthesis of alpha-Gal epitopes (Gal alpha 1-3Gal beta 1-4GlcNAc-R) and their unique potential in future alpha-Gal therapies. Front Mol Biosci. 2021:8. doi:10.3389/fmolb.2021.746883.
  • Steinke JW, Platts-Mills TAE, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immun. 2015;135:589–96. doi:10.1016/j.jaci.2014.12.1947.
  • Sheeley DM, Merrill BM, Taylor LCE. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem. 1997;247:102–10. doi:10.1006/abio.1997.2036.
  • Bosques CJ, Collins BE, Meador JW, Sarvaiya H, Murphy JL, DelloRusso G, Bulik DA, Hsu IH, Washburn N, Sipsey SF, et al. Chinese hamster ovary cells can produce galactose-alpha-1,3-galactose antigens on proteins. Nat Biotechnol. 2010;28:1153–56. doi:10.1038/nbt1110-1153.
  • Ashford DA, Alafi CD, Gamble VM, Mackay DJG, Rademacher TW, Williams PJ, Dwek RA, Barclay AN, Davis SJ, Somoza C, et al. Site-Specific glycosylation of recombinant rat and human soluble Cd4 variants expressed in Chinese-Hamster ovary cells. J Biol Chem. 1993;268:3260–67. doi:10.1016/S0021-9258(18)53687-5.
  • Borrebaeck CAK, Malmborg AC, Ohlin M. Does endogenous glycosylation prevent the use of mouse monoclonal-Antibodies as cancer therapeutics. Immunol Today. 1993;14:477–79. doi:10.1016/0167-5699(93)90259-N.
  • Galili U, Matta KL. Inhibition of anti-Gal IgG binding to porcine endothelial cells by synthetic oligosaccharides. Transplantation. 1996;62:256–62. doi:10.1097/00007890-199607270-00018.
  • Stavenhagen K, Kolarich D, Wuhrer M. Clinical glycomics employing graphitized carbon liquid chromatography-Mass spectrometry. Chromatographia. 2015;78:307–20. doi:10.1007/s10337-014-2813-7.
  • Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Edit. 2015;54:7096–100. doi:10.1002/anie.201502093.
  • Hinterholzer A, Stanojlovic V, Cabrele C, Schubert M. Unambiguous identification of pyroglutamate in full-Length biopharmaceutical monoclonal antibodies by NMR spectroscopy. Anal Chem. 2019;91:14299–305. doi:10.1021/acs.analchem.9b02513.
  • Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Identification and quantification of oxidation products in full-Length biotherapeutic antibodies by NMR spectroscopy. Anal Chem. 2020;92:9666–73. doi:10.1021/acs.analchem.0c00965.
  • Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Detecting aspartate isomerization and backbone cleavage after aspartate in intact proteins by NMR spectroscopy. J Biomol Nmr. 2021;75:71–82. doi:10.1007/s10858-020-00356-4.
  • Peng JN, Patil SM, Keire DA, Chen K. Chemical structure and composition of major glycans covalently linked to therapeutic monoclonal antibodies by middle-Down nuclear magnetic resonance. Anal Chem. 2018;90:11016–24. doi:10.1021/acs.analchem.8b02637.
  • Zhuo Y, Keire DA, Chen K. Minor N-Glycan mapping of monoclonal antibody therapeutics using middle-Down NMR spectroscopy. Mol Pharmaceut. 2021;18:441–50. doi:10.1021/acs.molpharmaceut.0c01083.
  • Unione L, Lenza MP, Arda A, Urquiza P, Lain A, Falcon-Perez JM, Jimenez-Barbero J, Millet O. Glycoprofile analysis of an intact glycoprotein as inferred by NMR spectroscopy. Acs Central Sci. 2019;5:1554–61. doi:10.1021/acscentsci.9b00540.
  • Wong SF. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther. 2005;27:684–94. doi:10.1016/j.clinthera.2005.06.003.
  • Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, Baessmann C, Wagner-Rousset E, Suckau D, Beck A. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. Mabs-Austin. 2013;5:699–710. doi:10.4161/mabs.25423.
  • Fussl F, Trappe A, Carillo S, Jakes C, Bones J. Comparative elucidation of cetuximab heterogeneity on the intact protein level by cation exchange chromatography and capillary electrophoresis coupled to mass spectrometry. Anal Chem. 2020;92:5431–38. doi:10.1021/acs.analchem.0c00185.
  • Chung CH, Mirakhur B, Chan E, Le Q, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. New Engl J Med. 2008;358:1109–17. doi:10.1056/NEJMoa074943.
  • Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou QW. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem. 2007;364:8–18. doi:10.1016/j.ab.2007.01.023.
  • O’Neil BH, Allen R, Spigel DR, Stinchcombe TE, Moore DT, Berlin JD, Goldberg RM. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol. 2007;25:3644–48. doi:10.1200/Jco.2007.11.7812.
  • Maier S, Chung CH, Morse M, Platts-Mills T, Townes L, Mukhopadhyay P, Bhagavatheeswaran P, Racenberg J, Trifan OC. A retrospective analysis of cross-reacting cetuximab IgE antibody and its association with severe infusion reactions. Cancer Med-Us. 2015;4:36–42. doi:10.1002/cam4.333.
  • Wang C, He XH, Zhou B, Li J, Li BH, Qian WZ, Hou S, Wang H, Shi YK, Guo YJ. Phase 1 study of anti-epidermal growth factor receptor monoclonal antibody in patients with solid tumors. Mabs-Austin. 2011;3:67–75. doi:10.4161/mabs.3.1.14021.
  • Zierke M, Smiesko M, Rabbani S, Aeschbacher T, Cutting B, Allain FHT, Schubert M, Ernst B. Stabilization of branched oligosaccharides: Lewis(x) benefits from a nonconventional C-H center dot center dot center dot O hydrogen bond. J Am Chem Soc. 2013;135:13464–72. doi:10.1021/ja4054702.
  • Aeschbacher T, Zierke M, Smiesko M, Collot M, Mallet JM, Ernst B, Allain FHT, Schubert M, Secondary Structural A. Element in a wide range of fucosylated glycoepitopes. Chem-Eur J. 2017;23:11598–610. doi:10.1002/chem.201701866.
  • Zhang YZ, Gomez-Redondo M, Jimenez-Oses G, Arda A, Overkleeft HS, van Der Marel GA, Jimenez-Barbero J, Codee JDC. Synthesis and structural analysis of aspergillus fumigatus galactosaminogalactans featuring alpha-Galactose, alpha-Galactosamine and alpha-N-Acetyl galactosamine linkages. Angew Chem Int Edit. 2020;59:12746–50. doi:10.1002/anie.202003951.
  • Corzana F, Bettler E, du Penhout CH, Tyrtysh TV, Bovin NV, Imberty A. Solution structure of two xenoantigens: alpha Gal-LacNAc and alpha Gal-Lewis X. Glycobiology. 2002;12:241–50. doi:10.1093/glycob/12.4.241.
  • Klukowski P, Schubert M. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics. Bioinformatics. 2019;35:293–300. doi:10.1093/bioinformatics/bty465.
  • Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol. 1996;14:975–81. doi:10.1038/nbt0896-975.
  • Zhu L, Guo QC, Guo HZ, Liu T, Zheng YX, Gu PM, Chen X, Wang H, Hou S, Guo YJ. Versatile characterization of glycosylation modification in CTLA4-Ig fusion proteins by liquid chromatography-mass spectrometry. Mabs-Austin. 2014;6:1474–85. doi:10.4161/mabs.36313.
  • Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes - a leap in NMR technology. Prog Nucl Mag Res Sp. 2005;46:131–55. doi:10.1016/j.pnmrs.2005.03.001.
  • Dorland L, Vanhalbeek H, Vliegenthart JFG. The identification of terminal-Alpha (1-]3)-Linked galactose in N-Acetyllactosamine type of glycopeptides by means of 500-MHz H-1-NMR Spectroscopy. Biochem Bioph Res Co. 1984;122:859–66. doi:10.1016/S0006-291x(84)80113-8.
  • Gebus C, Cottin C, Randriantsoa M, Drouillard S, Samain E. Synthesis of alpha-galactosyl epitopes by metabolically engineered Escherichia coli. Carbohyd Res. 2012;361:83–90. doi:10.1016/j.carres.2012.05.015.
  • Karki G, Mishra VN, Mandal PK. An expeditious synthesis of blood-group antigens, ABO histo-blood group type II antigens and xenoantigen oligosaccharides with amino type spacer-arms. Glycoconjugate J. 2016;33:63–78. doi:10.1007/s10719-015-9635-1.
  • D’Atri V, Fekete S, Beck A, Lauber M, Guillarme D. Hydrophilic interaction chromatography hyphenated with mass spectrometry: a powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analysis. Anal Chem. 2017;89:2086–92. doi:10.1021/acs.analchem.6b04726.
  • Bongers J, Devincentis J, Fu JM, Huang PQ, Kirkley DH, Leister K, Liu PR, Ludwig R, Rumney K, Tao L, et al. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J Chromatogr A. 2011;1218:8140–49. doi:10.1016/j.chroma.2011.08.089.
  • Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397:3457–81. doi:10.1007/s00216-010-3532-z.
  • Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based methods for immunoglobulin (G) Glycosylation Analysis. Exp Suppl. 2021;112:137–72. doi:10.1007/978-3-030-76912-3_4.
  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K. Recommendations for the presentation of NMR structures of proteins and nucleic acids - IUPAC-IUBMB-IUPAB Inter-Union task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR. 1998;12:1–23. doi:10.1023/A1008290618449.