2,146
Views
0
CrossRef citations to date
0
Altmetric
Report

Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen

, ORCID Icon, , , , , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2362775 | Received 22 Dec 2023, Accepted 29 May 2024, Published online: 20 Jun 2024

References

  • Sidhu SS, Fellouse FA. Synthetic therapeutic antibodies. Nat Chem Biol. 2006;2(12):682–17. doi:10.1038/nchembio843.
  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552–54. doi:10.1038/348552a0.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y. et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci USA. 2017;114(5):944–49. doi:10.1073/pnas.1616408114.
  • Wolf Perez AM, Sormanni P, Andersen JS, Sakhnini LI, Rodriguez-Leon I, Bjelke JR, Gajhede AJ, De Maria L, Otzen DE, Vendruscolo M. et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library. Mabs-austin. 2019;11(2):388–400. doi:10.1080/19420862.2018.1556082.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–89. doi:10.1038/s41586-021-03819-2.
  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–76. doi:10.1126/science.abj8754.
  • Evans R, Clausen TM, Nora C, Cribbs AP, Denardo A, Clark AE, Garretson AF, Coker JKC, Narayanan A, Majowicz SA. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2021; 2021.10.04.463034. doi:10.1101/2021.03.22.436522.
  • Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379(6637):1123–30. doi:10.1126/science.ade2574.
  • Abanades B, Georges G, Bujotzek A, Deane CM. ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics. 2022;38(7):1877–80. doi:10.1093/bioinformatics/btac016.
  • Ruffolo JA, Chu L-S, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun. 2023;14(1):2389. doi:10.1038/s41467-023-38063-x.
  • Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep learning. Patterns (N Y). 2022;3(2):100406. doi:10.1016/j.patter.2021.100406.
  • Cohen T, Halfon M, Schneidman-Duhovny D. NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning. Front Immunol. 2022;13:958584. doi:10.3389/fimmu.2022.958584.
  • Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchinnikov S, Hao J, Bafna K, Norn C, Kang A, Bera AK. et al. De novo protein design by deep network hallucination. Nature. 2021;600(7889):547–52. doi:10.1038/s41586-021-04184-w.
  • Norn C, Wicky BIM, Juergens D, Liu S, Kim D, Tischer D, Koepnick B, Anishchenko I, Baker D, Ovchinnikov S. et al. Protein sequence design by conformational landscape optimization. Proc Natl Acad Sci USA. 2021;118(11). doi:10.1073/pnas.2017228118.
  • Mahajan SP, Ruffolo JA, Frick R, Gray JJ. Hallucinating structure-conditioned antibody libraries for target-specific binders. Front Immunol. 2022;13:999034. doi:10.3389/fimmu.2022.999034.
  • Hie BL, Shanker, VR, Xu D, Bruun, TU, Weidenbacher, PA, Tang S, Wu, W, Pak, JE, Kim, PS. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol. 2023;42(2):275–83
  • Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A. ProGen2: exploring the boundaries of protein language models. Cell Syst. 2022;14(11):968–78.e3. doi:10.1016/j.cels.2023.10.002.
  • Ruffolo JA, Gray JJ, Sulam J. Deciphering antibody affinity maturation with language models and weakly supervised learning. 2021.
  • Leem J, Mitchell LS, Farmery JHR, Barton J, Galson JD. Deciphering the language of antibodies using self-supervised learning. Patterns (N Y). 2022;3(7):100513. doi:10.1016/j.patter.2022.100513.
  • Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L, Svozil D, Bitton DA. BioPhi: a platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. Mabs-austin. 2022;14(1):2020203. doi:10.1080/19420862.2021.2020203.
  • Shuai RW, Ruffolo JA, Gray JJ. Generative language modeling for antibody design. bioRxiv. 2021; 2021.12.13.472419.
  • Luo S, Su Y, Peng X, Wang S, Peng J, Ma J. Antigen-specific antibody design and optimization with diffusion-based generative models. Adv Neural Inf Process Syst. 2022;35:2022.07.10.499510.
  • Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL, Xiong C, Sun ZZ, Socher R. et al. Large language models generate functional protein sequences across diverse families. Nat Biotechnol. 2023;41(8):1099–106. doi:10.1038/s41587-022-01618-2.
  • Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D. TemStaPro: protein thermostability prediction using sequence representations from protein language models. Bioinformatics. 2023;40(4):2023.03.27.534365.
  • Hummer AM, Schneider C, Chinery L, Deane, CM. Investigating the volume and diversity of data needed for generalizable antibody-antigen ∆∆G prediction. bioRxiv. 2023; 2023.05.17.541222.
  • Festa F, Steel J, Bian X, Labaer J. High-throughput cloning and expression library creation for functional proteomics. Proteomics. 2013;13(9):1381–99. doi:10.1002/pmic.201200456.
  • Hughes SR, Butt TR, Bartolett S, Riedmuller SB, Farrelly P. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications. J Lab Autom. 2011;16(4):292–307. doi:10.1016/j.jala.2011.04.004.
  • Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 2016;6(8):6(8. doi:10.1098/rsob.160196.
  • Razinkov VI, Treuheit MJ, Becker GW. Accelerated formulation development of monoclonal antibodies (mAbs) and mAb-based modalities: review of methods and tools. J Biomol Screen. 2015;20(4):468–83. doi:10.1177/1087057114565593.
  • Furtmann N, Schneider M, Spindler N, Steinmann B, Li Z, Focken I, Meyer J, Dimova D, Kroll K, Leuschner WD. et al. An end-to-end automated platform process for high-throughput engineering of next-generation multi-specific antibody therapeutics. Mabs-austin. 2021;13(1):1955433. doi:10.1080/19420862.2021.1955433.
  • Segaliny AI, Jayaraman J, Chen X, Chong J, Luxon R, Fung A, Fu Q, Jiang X, Rivera R, Ma X. et al. A high throughput bispecific antibody discovery pipeline. Commun Biol. 2023;6(1):380. doi:10.1038/s42003-023-04746-w.
  • Warszawski S, Borenstein Katz A, Lipsh R, Khmelnitsky L, Ben Nissan G, Javitt G, Dym O, Unger T, Knop O, Albeck S. et al. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLOS Comput Biol. 2019;15(8):e1007207. doi:10.1371/journal.pcbi.1007207.
  • Braden BC, Souchon H, Eiselé J-L, Bentley GA, Bhat TN, Navaza J, Poljak RJ. Three-dimensional structures of the free and the antigen-complexed Fab from monoclonal anti-lysozyme antibody D44.1. J Mol Biol. 1994;243(4):767–81. doi:10.1016/0022-2836(94)90046-9.
  • Cauerhff A, Goldbaum FA, Braden BC. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci U S A. 2004;101(10):3539–44. doi:10.1073/pnas.0400060101.
  • Schwarz FP, Tello D, Goldbaum FA, Mariuzza RA, Poljak RJ. Thermodynamics of antigen-antibody binding using specific anti-lysozyme antibodies. Eur J Biochem. 1995;228(2):388–94. doi:10.1111/j.1432-1033.1995.00388.x.
  • Tennenhouse A, Khmelnitsky L, Khalaila R, Yeshaya N, Noronha A, Lindzen M, Makowski EK, Zaretsky I, Sirkis YF, Galon-Wolfenson Y. et al. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat Biomed Eng. 2023;8(1):30–44. doi:10.1038/s41551-023-01079-1.
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol. 2007;25(10):1171–76. doi:10.1038/nbt1336.
  • Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ, Milles LF, Wicky BIM, Courbet A, de Haas RJ, Bethel N. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science. 2022;378(6615):49–56. doi:10.1126/science.add2187.
  • Dreyer FA, Cutting D, Schneider C, Kenlay H, Deane, CM. Inverse folding for antibody sequence design using deep learning. arXiv preprint arXiv:2310.19513. 2023.
  • Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Commun Biol. 2023;6(1):575. doi:10.1038/s42003-023-04927-7.
  • Bennett NR, Watson, JL, Ragotte, RJ, Borst, AJ, See, DL, Weidle C, Biswas R, Shrock, EL, Leung, PJ, Huang B. et al. Atomically accurate de novo design of single-domain antibodies. bioRxiv. 2024; 2024.03.14.585103.
  • Dobson CL, Devine PWA, Phillips JJ, Higazi DR, Lloyd C, Popovic B, Arnold J, Buchanan A, Lewis A, Goodman J. et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep. 2016;6(1):38644. doi:10.1038/srep38644.