270
Views
9
CrossRef citations to date
0
Altmetric
Article

Colorimetric detection of the β-agonist ractopamine in animal feed, tissue and urine samples using gold–silver alloy nanoparticles modified with sulfanilic acid

, , , , &
Pages 35-45 | Received 29 Jul 2018, Accepted 13 Nov 2018, Published online: 05 Dec 2018

References

  • Alazawi MA, Bidin N, Bououdina M, Mohammad SM. 2016. Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol Energy. 126:93−104.
  • Asnaashari M, Kenari RE, Farahmandfar R, Taghdisi SM, Abnous K. 2018. Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensor Actuat B-Chem. 265:339−345.
  • Beier J, Beeh KM. 2011. Long-acting β-adrenoceptor agonists in the management of COPD: focus on indacaterol. Int J Chronic Obstr. 6:237−243.
  • Brambilla G, Cenci T, Franconi F, Galarini R, Macri A, Rondoni F, Strozzi M, Loizzo A. 2000. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett. 114:47−53.
  • Chang K, Chang Y, Tsai C. 2017. Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry. J Food Drug Anal. 26:725−730.
  • Csapó E, Patakfalvi R, Hornok V, Toth LT, Sipos A, Szalai A, Csete M, Dékány I. 2012. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloid Surface B. 98:43−49.
  • Dimitratos N, Porta F, Prati L. 2005. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method. Synthesis and catalytic testing for liquid phase oxidation of glycerol. Applied Catalysis A: General. 291:210–214.
  • Du JW, Hu X, Zhang GW, Wu XQ, Gong DM. 2018. Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles. Anal Lett. doi:10.1080/00032719.2018.1455103
  • Duan JH, He DW, Wang WS, Liu YC, Wu HP, Wang YS, Fu M, Li SL. 2013. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta. 115:992−998.
  • Goyal RN, Gupta VK, Bachheti N, Sharma RA. 2008. Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanal. 20:757−764.
  • He L, Su Y, Zeng Z, Liu Y, Huang X. 2007. Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry. Anim Feed Sci Tech. 132:316−323.
  • Huang P, Li J, Song J, Gao N, Wu F. 2016a. Silver nanoparticles modified with sulfanilic acid for one-step colorimetric and visual determination of histidine in serum. Microchim Acta. 183:1865−1872.
  • Huang P, Ma W, Yu P, Mao L. 2016b. Dopamine-directed in-situ and one-step synthesis of Au@Ag core-shell nanoparticles immobilized to a metal-organic framework for synergistic catalysis. Chem-Asian J. 11:2705−2709.
  • Jiang DN, Cao BY, Wang MY, Yang H, Zhao K, Li JG, Li MX, S LL, Deng AP. 2017. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new β-agonist, phenylethanolamine A, in food samples. J Sci Food Agric. 97:1001−1009.
  • Lehotay SJ, Lightfield AR. 2018. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts. Anal Bioanal Chem. 410:1095−1109.
  • Li J, Huang P, Wu F. 2017. Specific pH effect for selective colorimetric assay of glutathione using anti-aggregation of label-free gold nanoparticles. RSC Adv. 7:13426−13432.
  • Li ZY, Wang YH, Kong WJ, Li CF, Wang ZX, Fu ZF. 2013. Highly sensitive near-simultaneous assay of multiple “lean meat agent” residues in swine urine using a disposable electrochemiluminescent immunosensors array. Biosens Bioelectro. 39:311−314.
  • Lin C, Yu C, Lin Y, Tseng W. 2010. Colorimetric sensing of silver(i) and mercury(ii) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem. 82:6830−6837.
  • Liu H, Ousmane D, Gan N, Wu D, Li T. 2017. Novel stir bar array sorptive extraction coupled with gas chromatography-mass spectrometry for simultaneous determination of three β2-agonist residues in pork. Chromatographia. 80:473−482.
  • Liu Z, Zhou Y, Wang Y, Cheng Q, Wu K. 2012. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode. Electrochim Acta. 74:139−144.
  • Luo YL, Liu X, Guo J, Gao HT, Li Y, Xu JY, Shen F, Sun CY. 2016. Visual screening and colorimetric determination of clenbuterol and ractopamine using unmodified gold nanoparticles as probe. J Nanosci Nanotechnol. 16:548−554.
  • Mitchell GA, Dunnavan G. 1998. Illegal use of beta-adrenergic agonists in the United States. J Anim Sci. 76:208−211.
  • Niño AM, Granja RH, Wanschel AC, Salerno AG. 2017. The challenges of ractopamine use in meat production for export to European Union and Russia. Food Control. 72:289−292.
  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB. 2016. Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci. 15:433−442.
  • Pham X, Lee M, Shim S, Jeong S, Kim H, Hahm E. 2017. Highly sensitive and reliable SERS probes based on nanogap control of a Au-Ag alloy on silica nanoparticles. RSC Adv. 7:7015−7021.
  • Raveendran P, Fu J, Wallen SL. 2006. A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 8:34−38.
  • Sheng F, Zhang X, Wang G. 2017. Novel ultrasensitive homogeneous electrochemical aptasensor based on dsDNA-templated copper nanoparticles for the detection of ractopamine. J Mater Chem B. 5:53−61.
  • Smith DJ. 2000. Total radioactive residues and clenbuterol residues in swine after dietary administration of [14C] clenbuterol for seven days and preslaughter withdrawal periods of zero, three, or seven days. J Anim Sci. 78:2903−2912.
  • Song J, Wu F, Wan Y, Ma L. 2015. Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control. 50:356−361.
  • Stolker AA, Brinkman UA. 2005. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. J Chromatogr A. 1067:15−53.
  • Tao H, Hu T, Yan J, Di J. 2015. A comparative study of different reagentless plasmon sensors based on Ag-Au alloy nanoparticles for detection of Hg. Sensor Actuat B-Chem. 208:43−49.
  • Vilela D, Castaneda R, Gonzalez MC, Mendoza S, Escarpa A. 2015. Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Mikrochim Acta. 182:105−111.
  • Wang B, Liu M, Wang Y, Chen X. 2011. Structures and energetics of silver and gold nanoparticles. J Phys Chem C. 115:11374−11381.
  • Wang ZH, Liu MX, Shi WM, Li CL, Zhang SX, Shen JZ. 2015. New haptens and antibodies for ractopamine. Food Chem. 183:111−114.
  • Wei R. 2017. Biosynthesis of Au-Ag alloy nanoparticles for sensitive electrochemical determination of paracetamol. Int J Electrochem Sci. 12:9131−9140.
  • Wu ZZ, Xu EB, Li JP, Long J, Jiao AQ, Jin ZY. 2017. Determination of antioxidant capacity of Chinese rice wine and zhuyeqing liquor using nanoparticle-based colorimetric methods. Food Anal Methods. 10:788−798.
  • Yang NN, Gao YX, Zhang YJ, Shen ZY, Wu AG. 2014a. A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. Talanta. 122:272−277.
  • Yang X, Feng B, Yang P, Ding YG, Chen YQ, Fei JJ. 2014b. Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode. Food Chem. 145:619−624.
  • Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS. 2016. Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B. 181:371−378.
  • Yuan CL, Wei WY, Mei YX, Luo XF, Lei W. 2017. A new approach for fabricating Au-Ag alloy nanoparticles confined in Al2O3 matrix. Mater Lett. 190:248−251.
  • Zhai FL, Huang YQ, Li CY, Wang XC, Lai KQ. 2011. Rapid determination of ractopamine in swine urine using surface-enhanced Raman spectroscopy. J Agric Food Chem. 59:10023−10027.
  • Zhang J, Shao XT, Yue JL, Li DH, Chen ZH. 2014. Preparation of ractopamine-tetraphenylborate complexed nanoparticles used as sensors to rapidly determine ractopamine residues in pork. Nanoscale Res Lett. 9:639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.