361
Views
5
CrossRef citations to date
0
Altmetric
Articles

Label-free gold nanoclusters as quenchable fluorescent probes for sensing olaquindox assisted by glucose oxidase-triggered Fenton reaction

, , , , , & show all
Pages 752-761 | Received 19 Nov 2018, Accepted 28 Feb 2019, Published online: 03 Apr 2019

References

  • Alonso M, Trapiella-Alfonso L, Fernandez J, Pereiro R, Sanz-Medel A. 2016. Functionalized gold nanoclusters as fluorescent labels for immunoassays: application to human serum immunoglobulin E determination. Biosens Bioelectron. 77:1055–1061.
  • Chen T, Hu Y, Cen Y, Chu X, Lu Y. 2013. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc. 135(31):11595–11602.
  • Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z. 2016. Quinoxaline 1,4-di-N-oxides: biological activities and mechanisms of actions. Front Pharmacol. 7:64.
  • Deng H, Wu G, He D, Peng H, Liu A, Xia X. 2015a. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst. 140(22):7650–7656.
  • Deng H, Zhang L, He S, Liu A, Li G, Lin X. 2015b. Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosens Bioelectron. 65:397–403.
  • Dou X, Zhang L, Liu C, Li Q, Luo J, Yang M. 2018. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchim Acta. 185:1.
  • Hossain M, Wilson W, Rowl R. 2017. Incorporation of antigens from whole cell lysates and purified virions from MP12 into fluorescence microsphere immunoassays for the detection of antibodies against Rift Valley fever virus. Virol Res J. 1(1):24–31.
  • Hu L, Deng L, Alsaiari S, Zhang D, Khashab N. 2014. “Light-on” sensing of antioxidants using gold nanoclusters. Anal Chem. 86(10):4989–4994.
  • Ihsan A, Wang X, Zhang W, Tu H, Wang Y, Huang L. 2013. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food Chem Toxicol. 59:207–214.
  • Jiang H, Su X, Zhang Y, Zhou J, Fang D, Wang X. 2016. Unexpected thiols triggering photoluminescent enhancement of cytidine stabilized Au nanoclusters for sensitive assays of glutathione reductase and its inhibitors screening. Anal Chem. 88(9):4766–4771.
  • Konstantinou G. 2017. Enzyme-linked immunosorbent assay (ELISA)/Food Allergens. New York (NY): Humana Press. 79–94.
  • Le T, Zhu L, Yu H. 2016. Dual-label quantum dot-based immunoassay for simultaneous determination of Carbadox and Olaquindox metabolites in animal tissues. Food Chem. 199:70–74.
  • Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J. 2015. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron. 66:251–258.
  • Li Z, Liu R, Xing G, Wang T, Liu S. 2017. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens Bioelectron. 96:44–48.
  • Liang Y, Huang X, Yu R, Zhou Y, Xiong Y. 2016. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal Chim Acta. 936:195–201.
  • Liu H, Wu X, Zhang X, Burda C, Zhu J. 2012. Gold nanoclusters as signal amplification labels for optical immunosensors. J Phys Chem C. 116(3):2548–2554.
  • Liu Z, Sun Z. 2013. The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: an overview. Med Chem. 9(8):1017–1027.
  • Luo J, Rasooly A, Wang L, Zeng K, Shen C, Qian P. 2016. Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters. Microchim Acta. 183(2):605–610.
  • Martín-Barreiro A, de Marcos S, Galbán J. 2018. Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Microchim Acta. 185:3.
  • Nguyen PD, Cong VT, Baek C, Min J. 2017. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens Bioelectron. 89(1):666–672.
  • Pei X, Wang Q, Li X, Xie J, Xie S, Peng T. 2016. Provision of ultrasensitive quantitative gold immunochromatography for rapid monitoring of olaquindox in animal feed and water samples. Food Anal Methods. 9(7):1919–1927.
  • Peng J, Kong D, Liu L, Song S, Kuang H, Xu C. 2015. Determination of quinoxaline antibiotics in fish feed by enzyme-linked immunosorbent assay using a monoclonal antibody. Anal Methods. 7(12):5204–5209.
  • Shang L, Dong S, Nienhaus G. 2011. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 6(4):401–418.
  • Song C, Liu Q, Zhi A, Yang J, Zhi Y, Li Q. 2011. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of olaquindox residues. J Agri Food Chem. 59(17):9319–9326.
  • Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X. 2016. Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem. 88(19):9789–9795.
  • Tao L, Xu J, He H, Niu X, Chen Y, Jia Y. 2013. Development and validation of an enzyme-linked immunosorbent assay for rapid detection of multi-residues of five quinoxaline-1,4-dioxides in animal feeds. Food Agri Immunol. 24(4):457–466.
  • Xia J, Wei X, Chen X, Shu Y, Wang J. 2018. Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor. Microchim Acta. 185:3.
  • Xie J, Zheng Y, Ying J. 2009. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 131(3):888–889.
  • Xiong S, Zhou Y, Huang X, Yu R, Lai W, Xiong Y. 2017. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal Chim Acta. 972:94–101.
  • Xu P, Li R, Tu Y, Yan J. 2015. A gold nanocluster-based sensor for sensitive uric acid detection. Talanta. 144:704–709.
  • Xu Y, Zhang P, Wang Z, Lv S, Ding C. 2018. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta. 185:3.
  • Yang S, Jiang Z, Chen Z, Tong L, Lu J, Wang J. 2015. Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim Acta. 182(11–12):1911–1916.
  • Yang W, Tian J, Wang L, Fu S, Huang H, Zhao Y. 2016a. A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters. Analyst. 141(10):2998–3003.
  • Yang X, Jia Z, Tan Z, Xu H, Luo N, Liao X. 2016b. Determination of melamine in infant formulas by fluorescence quenching based on the functionalized Au nanoclusters. Food Control. 70:286–292.
  • Yao Y, Wang X, Duan W, Li F. 2018. A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads. Analyst. 143(3):709–714.
  • Zhang L, Wang E. 2014. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 9(1):132–157.
  • Zhang S, Wang K, Li KB, Shi W, Jia WP, Chen X. 2017a. A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron. 91:374–379.
  • Zhang X, Zeng Y, Zheng A, Cai Z, Huang A, Zeng J. 2017b. A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metal-organic framework. Microchimica Acta. 184(7):1933–1940.
  • Zheng Y, Lai L, Liu W, Jiang H, Wang X. 2017. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Inter Sci. 242:1–16.
  • Zong C, Wang M, Li B, Liu X, Zhao W, Zhang Q. 2017. Sensing of hydrogen peroxide and glucose in human serum via quenching fluorescence of biomolecule-stabilized Au nanoclusters assisted by the Fenton reaction. RSC Adv. 7(43):26559–26565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.