588
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pyrrolizidine alkaloids and tropane alkaloids in milk samples from individual dairy farms of the German federal states of Bavaria and Schleswig-Holstein

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 629-647 | Received 25 Jan 2024, Accepted 24 Mar 2024, Published online: 09 Apr 2024

References

  • Aboling S, Rieger H, Kölln M, Tenhündfeld J, Roerink G, Platje N, Kamphues J. 2019. Feed refusal in fattening bulls because of maize silage contamination by Jimson weed (Datura stramonium). Tierarztl Prax Ausg G Grosstiere Nutztiere. 47(2):125–130.
  • Banasiak U, Heseker H, Sieke C, Sommerfeld C, Vohmann C. 2005. Estimation of the dietary intake of pesticide residues based on new consumption data for children. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 48(1):84–98. doi: 10.1007/s00103-004-0949-6.
  • German Federal Institute for Risk Assessment (BfR). 2016a. Opinion No. 008/2016: raw milk: boiling protects against infection with Campylobacter. Berlin: BfR.
  • German Federal Institute for Risk Assessment (BfR). 2016b. Opinion No. 030/2016: pyrrolizidine alkaloids: levels in foods should continue to be kept as low as possible. Berlin: BfR.
  • German Federal Institute for Risk Assessment (BfR). 2020. Opinion No. 023/ 2020. Updated risk assessment on levels of 1,2-unsaturated pyrrolizidine alkaloids (PAs) in foods. Berlin: BfR.
  • Bofill FX, Bofill J, Such G, Piqué E, Guitart R. 2007. Dos casos de intoxicación por contaminación de maíz con Datura stramonium en ganado vacuno. Rev Toxicol. 24(1):56–58.
  • Brown JH, Laiken N. 2011. Muscarinic receptor agonists and antagonists. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. 12th ed. New York (NY): mcGraw-Hill Education; p. 219–237.
  • Brown AW, Stegelmeier BL, Colegate SM, Gardner DR, Panter KE, Knoppel EL, Hall JO. 2016. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus). J Appl Toxicol. 36(5):716–725. doi: 10.1002/jat.3205.
  • Carvalho S, Macel M, Mulder PPJ, Skidmore A, van der Putten WH. 2014. Chemical variation in Jacobaea vulgaris is influenced by the interaction of season and vegetation successional stage. Phytochemistry. 99:86–94. doi: 10.1016/j.phytochem.2013.12.004.
  • Chizzola R, Eller A. 2022. Seasonal variability in pyrrolizidine alkaloids in Jacobaea alpina from the Trentino-Alto Adige region (Northern Italy). Chem Biodivers.e202200603. eng.
  • de Nijs M, Crews C, Dorgelo F, MacDonald S, Mulder PPJ. 2023. Emerging issues on tropane alkaloid contamination of food in Europe. Toxins (Basel). 15(2):98. doi: 10.3390/toxins15020098.
  • de Nijs M, Mulder PPJ, Klijnstra MD, Driehuis F, Hoogenboom RLAP. 2017. Fate of pyrrolizidine alkaloids during processing of milk of cows treated with ragwort. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 34(12):2212–2219. doi: 10.1080/19440049.2017.1364432.
  • Dickinson JO, Cooke MP, King RR, Mohamed PA. 1976. Milk transfer of pyrrolizidine alkaloids in cattle. J Am Vet Med Assoc. 169(11):1192–1196.
  • European Commission (EC). 2023. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Official Journal of the European Union. L119:103–157.
  • Edgar JA, Molyneux RJ, Colegate SM. 2015. Pyrrolizidine alkaloids: potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem Res Toxicol. 28(1):4–20. doi: 10.1021/tx500403t.
  • European Food Safety Authority (EFSA). 2008. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission onTropane alkaloids (from Datura sp.) as undesirable substances in animal feed. EFSA J. 691:1–55.
  • European Food Safety Authority (EFSA). 2011. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 9(11):2406.
  • European Food Safety Authority (EFSA). 2012. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 10(3):2579.
  • European Food Safety Authority (EFSA). 2013. Scientific opinion on tropane alkaloids in food and feed. EFSA J. 11(10):3386.
  • European Food Safety Authority (EFSA). 2017. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 15(7):4908.
  • European Food Safety Authority (EFSA). 2018. Human acute exposure assessment to tropane alkaloids [Scientific Report]. EFSA J. 16(2):5160.
  • Flade J, Beschow H, Wensch-Dorendorf M, Plescher A, Wätjen W. 2019. Occurrence of nine pyrrolizidine alkaloids in Senecio vulgaris L. Depending on developmental stage and season. Plants. 8(3):54. doi: 10.3390/plants8030054.
  • FloraWeb. 2000– . Version 1.02. Bonn (Germany): German Federal Agency for Nature Conservation. [updated 2013 Dec 10; accessed 2024 Jan 23]. https://www.floraweb.de/pflanzenarten/pflanzenarten.html.
  • Friedman M, Levin CE. 1989. Composition of jimson weed (Datura stramonium) seeds. J Agric Food Chem. 37(4):998–1005. doi: 10.1021/jf00088a040.
  • Fu PP, Xia Q, Lin G, Chou MW. 2004. Pyrrolizidine alkaloids – genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev. 36(1):1–55. doi: 10.1081/dmr-120028426.
  • Geburek I, Preiss-Weigert A, Lahrssen-Wiederholt M, Schrenk D, These A. 2020. In vitro metabolism of pyrrolizidine alkaloids – metabolic degradation and GSH conjugate formation of different structure types. Food Chem Toxicol. 135:110868. doi: 10.1016/j.fct.2019.110868.
  • González-Gómez L, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. 2022. Occurrence and chemistry of tropane alkaloids in foods, with a focus on sample analysis methods: a review on recent trends and technological advances. Foods. 11(3):407. doi: 10.3390/foods11030407.
  • Gottschalk C, Kaltner F, Zimmermann M, Korten R, Morris O, Schwaiger K, Gareis M. 2020. Spread of Jacobaea vulgaris and occurrence of pyrrolizidine alkaloids in regionally produced honeys from Northern Germany: inter- and intra-site variations and risk assessment for special consumer groups. Toxins (Basel). 12(7):441. doi: 10.3390/toxins12070441.
  • Gottschalk C, Ostertag J, Meyer K, Gehring K, Thyssen S, Gareis M. 2018. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(4):750–759.
  • Gottschalk C, Ronczka S, Preiß-Weigert A, Ostertag J, Klaffke H, Schafft H, Lahrssen-Wiederholt M. 2015. Pyrrolizidine alkaloids in natural and experimental grass silages and implications for feed safety. Anim Feed Sci Technol. 207:253–261. doi: 10.1016/j.anifeedsci.2015.06.014.
  • Griffin WJ, Lin GD. 2000. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry. 53(6):623–637. doi: 10.1016/s0031-9422(99)00475-6.
  • Haas M, Wirachowski K, Thibol L, Küpper J-H, Schrenk D, Fahrer J. 2023. Potency ranking of pyrrolizidine alkaloids in metabolically competent human liver cancer cells and primary human hepatocytes using a genotoxicity test battery. Arch Toxicol. 97(5):1413–1428. doi: 10.1007/s00204-023-03482-8.
  • Hama JR, Strobel BW. 2021. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. Sci Total Environ. 755(Pt 1):142822. doi: 10.1016/j.scitotenv.2020.142822.
  • Hoogenboom LAP, Mulder PPJ, Zeilmaker MJ, van den Top HJ, Remmelink GJ, Brandon EFA, Klijnstra M, Meijer GAL, Schothorst R, Van Egmond HP. 2011. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 28(3):359–372. doi: 10.1080/19440049.2010.547521.
  • Huybrechts B, Callebaut A. 2015. Pyrrolizidine alkaloids in food and feed on the Belgian market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(11):1939–1951. doi: 10.1080/19440049.2015.1086821.
  • Jung S, Lauter J, Hartung NM, These A, Hamscher G, Wissemann V. 2020. Genetic and chemical diversity of the toxic herb Jacobaea vulgaris Gaertn. (syn. Senecio jacobaea L.) in Northern Germany. Phytochemistry. 172:112235. doi: 10.1016/j.phytochem.2019.112235.
  • Kalač P, Kaltner F. 2021. Pyrrolizidine alkaloids of European Senecio/Jacobaea species in forage and their carry-over to milk: a review. Anim Feed Sci Technol. 280:115062. doi: 10.1016/j.anifeedsci.2021.115062.
  • Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, Zoller O. 2018. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(2):316–327. doi: 10.1080/19440049.2017.1378443.
  • Klein LM, Gabler AM, Rychlik M, Gottschalk C, Kaltner F. 2022. A sensitive LC–MS/MS method for isomer separation and quantitative determination of 51 pyrrolizidine alkaloids and two tropane alkaloids in cow’s milk. Anal Bioanal Chem. 414(28):8107–8124. doi: 10.1007/s00216-022-04344-5.
  • Kolrep F, Numata J, Kneuer C, Preiss-Weigert A, Lahrssen-Wiederholt M, Schrenk D, These A. 2018. In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: microsomal degradation. Arch Toxicol. 92(3):1089–1097. doi: 10.1007/s00204-017-2114-7.
  • Lamp J, Knappstein K, Walte HG, Krause T, Steinberg P, Schwake-Anduschus C. 2021. Transfer of tropane alkaloids (atropine and scopolamine) into the milk of subclinically exposed dairy cows. Food Control. 126:108056. doi: 10.1016/j.foodcont.2021.108056.
  • Mädge I, Gehling M, Schöne C, Winterhalter P, These A. 2020. Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 37(8):1339–1358. doi: 10.1080/19440049.2020.1757166.
  • Marín-Sáez J, Romero-González R, Garrido Frenich A. 2019a. Degradation of tropane alkaloids in baked bread samples contaminated with Solanaceae seeds. Food Res Int. 122:585–592. doi: 10.1016/j.foodres.2019.01.027.
  • Marín-Sáez J, Romero-González R, Garrido Frenich A. 2019b. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf. Food Chem. 287:265–272. doi: 10.1016/j.foodchem.2019.02.091.
  • Max Rubner-Institut (MRI). 2008. Nationale Verzehrsstudie II. Ergebnisbericht, Teil 2: Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. MRI.
  • Mulder PPJ, Beumer B, Oosterink E, de Jong J. 2009. Dutch survey pyrrolizidine alkaloids in animal forage. Wageningen: Institute of Food Safety.
  • Mulder PPJ, De Nijs M, Castellari M, Hortos M, MacDonalds S, Crews C, Hajslova J, Stranska M. 2016. Occurrence of tropane alkaloids in food. EFSA supporting publication. EN-1140
  • Mulder PPJ, Klijnstra MD, Goselink RMA, van Vuuren AM, Cone JW, Stoopen G, Hoogenboom RLAP. 2020. Transfer of pyrrolizidine alkaloids from ragwort, common groundsel and viper’s bugloss to milk from dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 37(11):1906–1921. doi: 10.1080/19440049.2020.1798028.
  • Mulder PPJ, López Sánchez P, These A, Preiss-Weigert A, Castellari M. 2015. Occurrence of pyrrolizidine alkaloids in food. EFSA supporting publication. EN-859.
  • Mulder PPJ, López P, Castellari M, Bodi D, Ronczka S, Preiss-Weigert A, These A. 2018. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: results of a survey across Europe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(1):118–133. doi: 10.1080/19440049.2017.1382726.
  • Neumann H, Huckauf A. 2016. Tansy ragwort (Senecio jacobaea): a source of pyrrolizidine alkaloids in summer honey? J Verbr Lebensm. 11(2):105–115. doi: 10.1007/s00003-015-0986-0.
  • National Toxicology Program (NTP). 2003. Toxicology and carcinogenesis studies of riddelliine in F344/N Rats and B6C3F1 mice (Gavage Studies). National Toxicology Program Technical Report. p. 508.
  • Perharič L. 2005. Mass tropane alkaloid poisoning due to buckwheat flour contamination. Clin Toxicol. 43:413.
  • Perharič L, Juvan KA, Stanovnik L. 2013. Acute effects of a low-dose atropine/scopolamine mixture as a food contaminant in human volunteers. J Appl Toxicol. 33(9):980–990. doi: 10.1002/jat.2797.
  • Perharič L, Koželj G, Družina B, Stanovnik L. 2013. Risk assessment of buckwheat flour contaminated by thorn-apple (Datura stramonium L.) alkaloids: a case study from Slovenia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30(2):321–330. doi: 10.1080/19440049.2012.743189.
  • Ruan J, Liao C, Ye Y, Lin G. 2014. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids. Chem Res Toxicol. 27(1):7–16. doi: 10.1021/tx4004159.
  • Schenk A, Siewert B, Toff S, Drewe J. 2015. UPLC TOF MS for sensitive quantification of naturally occurring pyrrolizidine alkaloids in Petasites hybridus extract (Ze 339). J Chromatogr B Analyt Technol Biomed Life Sci. 997:23–29. doi: 10.1016/j.jchromb.2015.05.027.
  • Smith LW, Culvenor CCJ. 1981. Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod. 44(2):129–152. doi: 10.1021/np50014a001.
  • Suter M, Lüscher A. 2008. Occurrence of Senecio aquaticus in relation to grassland management. Appl Veg Sci. 11(3):317–324. doi: 10.1111/j.1654-109X.2008.tb00448.x.
  • Suttner G, Weisser WW, Kollmann J. 2016. Have the distribution and abundance of poisonous herb Senecio aquaticus increased in Bavarian grassland? Evaluation of extensive biotope mapping in the periods 1984–1995 and 1999–2013. Nat Landschaft. 91(12):544–552.
  • Taenzer J, Gehling M, Klevenhusen F, Saltzmann J, Dänicke S, These A. 2022. Rumen metabolism of Senecio pyrrolizidine alkaloids may explain why cattle tolerate higher doses than monogastric species. J Agric Food Chem. 70(33):10111–10120. doi: 10.1021/acs.jafc.2c01332.
  • Teuscher E, Lindequist U. 2010. Biogene Gifte – Biologie-Chemie-Pharmakologie-Toxikologie. 3rd ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft.
  • Vera-Baquero FL, Morante-Zarcero S, Sierra I. 2022. Evaluation of thermal degradation of tropane and opium alkaloids in gluten-free corn breadsticks samples contaminated with Stramonium seeds and baked with poppy seeds under different conditions. Foods. 11(15):2196. doi: 10.3390/foods11152196.
  • Wiggering H, Diekötter T, Donath TW. 2022. Regulation of Jacobaea vulgaris by varied cutting and restoration measures. PLoS One. 17(10):e0248094. doi: 10.1371/journal.pone.0248094.
  • Zheng W, Yoo K-H, Choi J-M, Park D-H, Kim S-K, Kang Y-S, Abd El-Aty AM, Hacımüftüoğlu A, Jeong JH, Bekhit AE-D, et al. 2019. A modified QuEChERS method coupled with liquid chromatography–tandem mass spectrometry for the simultaneous detection and quantification of scopolamine, L-hyoscyamine, and sparteine residues in animal-derived food products. J Adv Res. 15:95–102. doi: 10.1016/j.jare.2018.09.004.