1,542
Views
3
CrossRef citations to date
0
Altmetric
Research Article

TiNiHf/SiO2/Si shape memory film composites for bi-directional micro actuation

, ORCID Icon, , , , , , , , & show all
Pages 293-314 | Received 05 Mar 2022, Accepted 24 Apr 2022, Published online: 24 May 2022

References

  • Errando-Herranz C, Takabayashi AY, Edinger P, et al. MEMS for photonic integrated circuits. IEEE J Sel Top Quantum Electron. 2019;26(2):1.
  • Ollier E. Optical MEMS devices based on moving waveguides. IEEE J Sel Top Quantum Electron. 2002;8(1):155.
  • Lee H-T, Kim M-S, Lee G-Y, et al. Shape memory alloy (sma)-based microscale actuators with 60\% deformation rate and 1.6 kHz actuation speed. Small. 2018;14(23):1801023.
  • König D, Zarnetta R, Savan A, et al. Phase transformation, structural and functional fatigue properties of Ti–Ni–Hf shape memory thin films. Acta Materialia. 2011;59(8):3267.
  • Karaca HE, Saghaian SM, Ded G, et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Materialia. 2013;61(19):7422.
  • Karakoc O, Hayrettin C, Bass M, et al. Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Materialia. 2017;138(185). DOI:10.1016/j.actamat.2017.07.035
  • Choudhary N, Kaur D. Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sens Actuators A. 2016;242(162). DOI:10.1016/j.sna.2016.02.026
  • Lambrecht F, Lay C, Aseguinolaza IR, et al. NiMnGa/Si shape memory bimorph nanoactuation. Shape Memory and Superelasticity. 2016;2(4):347
  • Winzek B, Schmitz S, Rumpf H, et al. Recent developments in shape memory thin film technology. Mater Sci Eng A. 2004;378(1–2):40.
  • Rastjoo S, Fechner R, Bumke L, et al. Development and co-integration of a SMA/Si bimorph nanoactuator for Si photonic circuits. Microelectronic Engineering. 2020;(225). p. 111257.
  • Watanabe H, Yamada N, Okaji M. Linear thermal expansion coefficient of silicon from 293 to 1000 K. Int J Thermophys. 2004;25(1):221.
  • Shuitcev A, Vasin RN, Fan XM, et al. Volume effect upon martensitic transformation in Ti29. 7Ni50. 3Hf20 high temperature shape memory alloy. Scr Mater. 2020;178:67.
  • Shuitcev A, Vasin RN, Balagurov АM, et al. Thermal expansion of martensite in Ti29. 7Ni50. 3Hf20 shape memory alloy. Intermetallics. 2020;125:106889.
  • Winzek B, Sterzl T, Quandt E Bistable thin film composites with TiHfNi-shape memory alloys. Transducers ’01 Eurosensors XV Berlin, Heidelberg, Germany. 2001. p. 706–709.Springer.
  • Taya M, Liang Y, Namli OC, et al. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite. Smart Mater Struct. 2013;22(10):105003.
  • Sterzl T, Winzek B, Rumpf H, et al. Bistable shape memory composites for switches, grippers and adjustable capacitors in Proceedings of the 8th International Conference on New Actuators, Actuator Bremen, Germany (2002), pp. 91–94.
  • Vitushinsky R, Schmitz S, Ludwig A. Bistable thin-film shape memory actuators for applications in tactile displays. J Microelectromech Syst. 2008;18(1):186.
  • Winzek B, Schmitz S, Vitushinsky R. Shape memory actuators in mobile robots for planetary surface exploration in Tools and Technologies for Future Planetary Exploration Noordwijk, The Netherlands. 2004: 115–120
  • Karaca HE, Acar E, Tobe H, et al. NiTiHf-based shape memory alloys. Mater Sci Technol. 2014;30(13):1530.
  • Karakoc O, Hayrettin C, Evirgen A, et al. Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Materialia. 2019;175(107). DOI:10.1016/j.actamat.2019.05.051
  • Tong Y, Shuitcev A, Zheng: Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Adv Eng Mater. 2020;22(4):1900496.
  • Evirgen A, Karaman I, Santamarta R, et al. Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Materialia. 2016;121(374). DOI:10.1016/j.actamat.2016.08.065
  • Bechtold C, Chluba C, Zamponi C, et al. Fabrication and characterization of freestanding NiTi based thin film materials for shape memory micro-actuator applications. Shape Memory and Superelasticity. 2019;5(4):327
  • Motemani Y, McCluskey PJ, Zhao C, et al. Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry. Acta materialia. 2011;59(20):7602.
  • Meng XL, Zheng YF, Cai W, et al. Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J Alloys Compd. 2004;372(1–2):180.
  • Meng XL, Cai W, Chen F, et al. Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr Mater. 2006;54(9):1599.
  • Meng XL, Cai W, Fu YD, et al. Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics. 2008;16(5):698.
  • Mandepudi SK, Ackler HD. Processing and characterization of composite shape memory alloy (SMA) thin film structures for microactuators. Behavior and Mechanics of Multifunctional Materials and Composites. 2010. 7644.
  • Grummon DS. Thin-film shape-memory materials for high-temperature applications. JOM. 2003;55(12):24.
  • Waitz T, Kazykhanov V, Karnthaler HP. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Materialia. 2004;52(1):137.
  • Ishida A, Sato: M. Thickness effect on shape memory behavior of Ti-50.0 at % Ni thin film. . Acta Materialia. 2003;51(18):5571
  • König D, Ehmann M, Thienhaus S, et al. Micro-to nanostructured devices for the characterization of scaling effects in shape-memory thin films. J Microelectromech Syst. 2010;19(5):1264.
  • Meng XL, Cai W, Fu YD, et al. Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti, Hf) 2Ni precipitates. Acta Materialia. 2010;58(10):3751.
  • Meng XL, Cai W, Wang LM, et al. Microstructure of stress-induced martensite in a Ti–Ni–Hf high temperature shape memory alloy. Scr Mater. 2001;45(10):1177.
  • Meng XL, Cai W, Zheng YF, et al. Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett. 2002;55(1–2):111.
  • Yi X, Meng X, Cai W, et al. Multi-stage martensitic transformation behaviors and microstructural characteristics of Ti-Ni-Hf high temperature shape memory alloy powders. J Alloys Compd. 2019;781(644). DOI:10.1016/j.jallcom.2018.12.064
  • Winzek B, Sterzl T, Rumpf H, et al. Composites of different shape memory alloys and polymers for complex actuator motions in. Journal de Physique IV (Proceedings). 2003:1163–1168. DOI: 10.1051/jp4:20031089.
  • Sanjabi S, Cao YZ, Barber ZH. Multi-target sputter deposition of Ni50Ti50- xHfx shape memory thin films for high temperature microactuator application. Sens Actuators A. 2005;121(2):543.
  • Lima De Miranda R, Zamponi C, Quandt E. Micropatterned freestanding superelastic TiNi films. Adv Eng Mater. 2013;15(1–2):66.
  • Sedlák P, Frost M, Benešová B, et al. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast. 2012;39(132). DOI:10.1016/j.ijplas.2012.06.008
  • Sielenkämper M, Wulfinghoff S. A thermomechanical finite strain shape memory alloy model and its application to bistable actuators. In: Acta Mechanica. 2022.
  • Hurtado DE, Stainier L, Ortiz M. The special-linear update: An application of differential manifold theory to the update of isochoric plasticity flow rules. Int J Numer Method Biomed Eng. 2014;97(4):298.
  • Sielenkämper M, Dittmann J, Wulfinghoff S. Numerical strategies for variational updates in large strain inelasticity with incompressibility constraint. Int J Numer Method Biomed Eng. 2022;123(1):245–267.
  • Halphen B, Nguyen QS Sur les matériaux standard généralisés(1975).
  • Yang Q, Stainier L, Ortiz M. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids. 2006;54(2):401.
  • Lexcellent C, Boubakar ML, Bouvet C, et al. About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions. Int J Solids Struct. 2006;43(3):613.
  • Panico M, Brinson LC. A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J Mech Phys Solids. 2007;55(11):2491.
  • Taylor RL FEAP - Finite Element Analysis Program 2017.
  • Arivanandhan G, Li Z, Curtis S Temperature Homogenization of Co-Integrated Shape Memory—Silicon Bimorph Actuators, et al. in Multidisciplinary Digital Publishing Institute Proceedings. 2020;(64), p. 8.
  • Tabesh M, Lester B, Hartl D, et al. Influence of the latent heat of transformation and thermomechanical coupling on the performance of shape memory alloy actuators Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2012(2);237–248.
  • Turner TL Thermomechanical Response of Shape Memory Alloy Hybrid Composites (DIANE Publishing, 2001).
  • Uchil J, Fernandes FMB, Mahesh KK. X-ray diffraction study of the phase transformations in NiTi shape memory alloy. Mater Charact. 2007;58(3):243.
  • Zamkovskaya A, Maksimova E, Nauhatsky I, et al. X-ray diffraction investigations of the thermal expansion of iron borate FeBO3 crystals in Journal of Physics: Conference Series Saint-Petersburg, Russia 2017. p. 12030.
  • Qiu S, Krishnan VB, Padula SA, et al. Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi. Appl Phys Lett. 2009;95(14):141906.
  • Winzek B, Sterzl T, Rumpf H Thin film shape memory composites Nato conference on martensitic phase transformation Metz, France . Metz, France; 2002.
  • Fryer DS, Peters RD, Kim EJ, et al. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules. 2001;34(16):5627.
  • Lan T, Torkelson JM. Methacrylate-based polymer films useful in lithographic applications exhibit different glass transition temperature-confinement effects at high and low molecular weight. Polymer. 2014;55(5):1249.
  • Kahle O, Wielsch U, Metzner H, et al. Glass transition temperature and thermal expansion behaviour of polymer films investigated by variable temperature spectroscopic ellipsometry. Thin Solid Films. 1998;313-314(803–807).
  • Reese S, Govindjee S. Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers. Mech Time-Dependent Mater. 1997;1(4):357.
  • S. H. Goods. Thermal expansion and hydration behavior of PMMA moulding materials for LIGA applications (2003).
  • Hopcroft MA, Nix WD, Kenny TW. What is the young’s modulus of silicon? J Microelectromech Syst. 2010;19(2):229.
  • Zhang Y, Li M, Wang YD, et al. Superelasticity and serration behavior in small-sized NiMnGa alloys. Adv Eng Mater. 2014;16(8):955.
  • Knick CR, Smith GL, Morris C. J, et al. Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sens Actuators A. 2019;291(48–57).
  • Lega P, Nedospasov I, Orlov A, et al. On the Fundamental Limits of the Size of the Shape Memory Nanoactuators Posed by Martensitic Transition in Ti2NiCu Shape Memory Alloy on Nano-Scale. 2019 IEEE international conference on ManipulationManufacturing and Measurement on the Nanoscale (3M-NANO) Zhenjiang, China; 2019. p. 90–93.
  • Jarrige I, Holliger P, Jonnard P. Diffusion processes in NiTi/Si, NiTi/SiO2 and NiTi/Si3N4 systems under annealing. Thin Solid Films. 2004;458(1–2):314.