2,706
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties

Los efectos de la interacción entre la proteína miofibrilar y aislados proteicos de soja inducidos con calor en las propiedades del gel

, , , , , , , , , , & show all
Pages 527-534 | Received 21 Nov 2014, Accepted 19 Jan 2015, Published online: 20 Mar 2015

References

  • Brenner, T., Johannsson, R., & Nicolai, T. (2009). Characterisation and thermo-reversible gelation of cod muscle protein isolates. Food Chemistry, 115(1), 26–31. doi:10.1016/j.foodchem.2008.11.046
  • Feng, J., & Xiong, Y. L. (2002). Interaction of myofibrillar and preheated soy proteins. Journal of Food Science, 67(8), 2851–2856. doi:10.1111/j.1365-2621.2002.tb08827.x
  • Feng, J., & Xiong, Y. L. (2003). Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. Journal of Food Science, 68(3), 803–809. doi:10.1111/j.1365-2621.2003.tb08246.x
  • Haga, S., & Ohashi, T. (1984). Heat-induced gelation of a mixture of myosin B and soybean protein. Agricultural and Biological Chemistry, 48, 1001–1007. doi:10.1271/bbb1961.48.1001
  • Hermansson, A. M. (1979). Aggregation and denaturation involved in gel formation. In A. Pour-El (Ed.), Functionality and protein structure (pp. 81–103). Washington, DC: American Chemical Society.
  • Herrero, A. M., Carmona, P., Cofrades, S., & Jiménez-Colmenero, F. (2008). Raman spectroscopic determination of structural changes in meat batters upon soy protein addition and heat treatment. Food Research International, 41(7), 765–772. doi:10.1016/j.foodres.2008.06.001
  • Huang, X., Li, C., Yang, F., Xie, L., Xu, X., Zhou, Y., … Pan, S. (2010). Interactions and gel strength of mixed myofibrillar with soy protein, 7S globulin and enzyme-hydrolyzed soy proteins. European Food Research and Technology, 231(5), 751–762. doi:10.1007/s00217-010-1329-0
  • Jiang, J., & Xiong, Y. L. (2013). Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase. Meat Science, 93(3), 469–476. doi:10.1016/j.meatsci.2012.11.002
  • Kato, A., & Nakai, S. (1980). Hydrophobicity determined by fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure, 624(1), 13–20.
  • Kocher, P., & Foegeding, E. (1993). Microcentrifuge-based method for measuring water-holding of protein gel. Journal of Food Science, 58(5), 1040–1046.
  • Kristinsson, H. G., & Hultin, H. O. (2003). Role of pH and ionic strength on water relationships in washed minced chicken-breast muscle gels. Journal of Food Science, 68(3), 917–922. doi:10.1111/j.1365-2621.2003.tb08265.x
  • Lakemond, C. M., De Jongh, H. H., Hessing, M., Gruppen, H., & Voragen, A. G. (2000). Heat denaturation of soy glycinin: Influence of pH and ionic strength on molecular structure. Journal of Agricultural and Food Chemistry, 48(6), 1991–1995. doi:10.1021/jf9908704
  • Lanier, T. C., Yongsawatdigul, J., & Carvajal-Rondanelli, P. (2013). Surimi gelation chemistry. In J. W. Park (Ed.), Surimi and surimi seafood (pp. 101). New York, NY: Marcel Dekker.
  • Lee, H.-J., Choi, C., & Lee, S.-J. (2002). Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. Journal of Biological Chemistry, 277(1), 671–678. doi:10.1074/jbc.M107045200
  • Liu, Q., Bao, H., Xi, C., & Miao, H. (2014). Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. Journal of Food Engineering, 121, 58–63. doi:10.1016/j.jfoodeng.2013.08.016
  • Liu, R., Zhao, S.-M., Xie, B.-J., & Xiong, S.-B. (2011). Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocolloids, 25(5), 898–906. doi:10.1016/j.foodhyd.2010.08.016
  • McClements, D. J. (2002). Modulation of globular protein functionality by weakly interacting cosolvents. Critical Reviews in Food Science and Nutrition, 42(5), 417–471. doi:10.1080/20024091054210
  • Mills, E. N., Marigheto, N. A., Wellner, N., Fairhurst, S. A., Jenkins, J. A., Mann, R., … Belton, P. S. (2003). Thermally induced structural changes in glycinin, the 11S globulin of soya bean (Glycine max)—An in situ spectroscopic study. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1648(1), 105–114.
  • Mleko, S., & Foegeding, E. A. (2000). pH induced aggregation and weak gel formation of whey protein polymers. Journal of Food Science, 65(1), 139–143. doi:10.1111/j.1365-2621.2000.tb15969.x
  • O’Kane, F. E., Happe, R. P., Vereijken, J. M., Gruppen, H., & Van Boekel, M. A. (2004). Heat-induced gelation of pea legumin: Comparison with soybean glycinin. Journal of Agricultural and Food Chemistry, 52(16), 5071–5078. doi:10.1021/jf035215h
  • Park, D., Xiong, Y. L., & Alderton, A. L. (2007). Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein. Food Chemistry, 101(3), 1239–1246. doi:10.1016/j.foodchem.2006.03.028
  • Peng, I. C., Dayton, W. R., Quass, D. W., & Allen, C. E. (1982). Studies on the subunits involved in the interaction of soybean 11S protein and myosin. Journal of Food Science, 47(6), 1984–1990.
  • Peng, I. C., & Nielsen, S. S. (1986). Protein-protein interactions between soybean beta-conglycinin (B1-B6) and myosin. Journal of Food Science, 51(3), 588–59. doi:10.1111/j.1365-2621.1986.tb13886.x
  • Pietrasik, Z., Jarmoluk, A., & Shand, P. J. (2007). Effect of non-meat proteins on hydration and textural properties of pork meat gels enhanced with microbial transglutaminase. LWT-Food Science and Technology, 40(5), 915–920. doi:10.1016/j.lwt.2006.03.003
  • Renkema, J. M., & Van Vliet, T. (2002). Heat-induced gel formation by soy proteins at neutral pH. Journal of Agricultural and Food Chemistry, 50(6), 1569–1573. doi:10.1021/jf010763l
  • Sano, T., Noguchi, S. F., Matsumoto, J. J., & Tsuchiya, T. (1990). Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. Journal of Food Science, 55(1), 51–54. doi:10.1111/j.1365-2621.1990.tb06014.x
  • Taguchi, T., Ishizaka, H., Tanaka, M., Nagashima, Y., & Amano, K. (1987). Protein-protein interaction of fish myosin fragments. Journal of Food Science, 52(4), 1103–1104. doi:10.1111/j.1365-2621.1987.tb14287.x
  • Tahergorabi, R., Beamer, S. K., Matak, K. E., & Jaczynski, J. (2012). Functional food products made from fish protein isolate recovered with isoelectric solubilization/precipitation. LWT-Food Science and Technology, 48(1), 89–95. doi:10.1016/j.lwt.2012.02.018
  • Tang, C.-H., Choi, S.-M., & Ma, C.-Y. (2007). Study of thermal properties and heat-induced denaturation and aggregation of soy proteins by modulated differential scanning calorimetry. International Journal of Biological Macromolecules, 40(2), 96–104. doi:10.1016/j.ijbiomac.2006.06.013