3,229
Views
17
CrossRef citations to date
0
Altmetric
Articles

Steam-explosion-modified optimization of soluble dietary fiber extraction from apple pomace using response surface methodology

Optimización de la extracción de fibra dietética soluble de la pulpa de manzana modificada por explosión de vapor y usando la metodología de superficies de respuesta

, , , , , & show all
Pages 20-26 | Received 14 Feb 2017, Accepted 16 May 2017, Published online: 24 Jul 2017

References

  • Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M.J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. doi:10.1016/j.biortech.2009.11.093
  • AOAC. (2000). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.
  • Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821–1827. doi:10.1016/j.foodres.2013.09.025
  • Chen, Y., Ye, R., Yin, L., & Zhang, N. (2014). Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, 120(1), 1–8. doi:10.1016/j.jfoodeng.2013.07.011
  • Du, B., Zhu, F., & Xu, B. (2014). Physicochemical and antioxidant properties of dietary fibers from Qingke (hull-less barley) flour as affected by ultrafine grinding. Bioactive Carbohydrates and Dietary Fibre, 4(2), 170–175. doi:10.1016/j.bcdf.2014.09.003
  • Esposito, F., Arlotti, G., Maria, B.A., Napolitano, A., Vitale, D., & Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Research International, 38(10), 1167–1173. doi:10.1016/j.foodres.2005.05.002
  • Fabek, H., Messerschmidt, S., Brulport, V., & Goff, H.D. (2014). The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocolloids, 35(3), 718–726. doi:10.1016/j.foodhyd.2013.08.007
  • Feng, Z., Dou, W., Alaxi, S., Niu, Y., & Yu, L. (2017). Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocolloids, 62, 94–101. doi:10.1016/j.foodhyd.2016.07.032
  • Gao, A., Yan, X., Xu, X., Ye, R., & Chen, Y. (2015). Physicochemical and bioactive properties of soluble dietary fibers from Blasting Extrusion Processing (BEP)-extruded carrot residues. Food Bioprocess Technology, 8(10), 2036–2046. doi:10.1007/s11947-015-1557-1
  • Kaushik, N., Rao, P.S., & Mishra, H.N. (2016). Process optimization for thermal-assisted high pressure processing of mango (Mangifera indica L.) pulp using response surface methodology. LWT - Food Science and Technology, 69, 372–381. doi:10.1016/j.lwt.2016.01.062
  • Kosmala, M., Milala, J., Kołodziejczyk, K., Markowski, J., Zbrzeźniak, M., & Renard, C.M.G.C. (2013). Dietary fiber and cell wall polysaccharides from plum (Prunus domestica L.) fruit, juice and pomace: Comparison of composition and functional properties for three plum varieties. Food Research International, 54(2), 1787–1794. doi:10.1016/j.foodres.2013.10.022
  • Liu, X., Mu, T., Sun, H., Zhang, M., & Chen, J. (2013). Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chemistry, 141(3), 3034–3041. doi:10.1016/j.foodchem.2013.05.119
  • Ma, L., Wang, L., Tang, J., & Yang, Z. (2016). Optimization of arsenic extraction in rice samples by Plackett-Burman design and response surface methodology. Food Chemistry, 204, 283–288. doi:10.1016/j.foodchem.2016.02.126
  • Ma, T., Sun, X., Tian, C., Luo, J., Zheng, C., & Zhan, J. (2016). Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology. International Journal of Biological Macromolecules, 88, 162–170. doi:10.1016/j.foodchem.2016.02.126
  • Macagnan, F.T., Santos, L.R.D., Roberto, B.S., De Moura, F.A., Bizzani, M., & Da Silva, L.P. (2015). Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 6(1), 1–6. doi:10.1016/j.bcdf.2015.04.001
  • Neta, N.S., Peres, A.M., Teixeira, J.A., & Rodrigues, L.R. (2011). Maximization of fructose esters synthesis by response surface methodology. New Biotechnology, 28(4), 349–355. doi:10.1016/j.nbt.2011.02.007
  • Oliveira, T.I., Rosa, M.F., Cavalcante, F.L., Pereira, P.H., Moates, G.K., Wellner, N., … Azeredo, H.M. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 198, 113–118. doi:10.1016/j.foodchem.2015.08.080
  • Raghavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., & Tharanathan, R.N. (2004). Dietary fiber from coconut residue: Effects of different treatments and sieving mesh size on the hydration properties. European Food Research Technology, 218(6), 563–567. doi:10.1007/s00217-004-0889-2
  • Ramful, D., Tarnus, E., Aruoma, O.I., Bourdon, E., & Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International, 44(7), 2088–2099. doi:10.1016/j.foodres.2011.03.056
  • Romero-García, J.M., Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Moya, M., Ruiz, E., Fernández-Bolaños, J., & Castro, E. (2016). Obtaining sugars and natural antioxidants from olive leaves by steam-explosion. Food Chemistry, 210, 457–465. doi:10.1016/j.foodchem.2016.05.003
  • Shafiei, M., Kabir, M.M., Zilouei, H., Sarvari, H.I., & Karimi, K. (2013). Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresource Technology, 148c(8), 53–60. doi:10.1016/j.biortech.2013.08.111
  • Ubandorivera, J. (2005). Mexican lime peel: Comparative study on contents of dietary fibre and associated antioxidant activity. Food Chemistry, 89(1), 57–61. doi:10.1016/j.foodchem.2004.01.076
  • Wang, L., Xu, H., Yuan, F., Fan, R., & Gao, Y. (2015). Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chemistry, 185, 90–98. doi:10.1016/j.foodchem.2015.03.112
  • Xu, E., Pan, X., Wu, Z., Long, J., Li, J., Xu, X., … Jiao, A. (2016). Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion. Food Chemistry, 212, 146–154. doi:10.1016/j.foodchem.2016.05.171
  • Yu, Z., Zhang, B., Yu, F., Xu, G., & Song, A. (2012). A real explosion: The requirement of steam explosion pretreatment. Bioresource Technology, 121(121), 335–341. doi:10.1016/j.biortech.2012.06.055
  • Zhang, D.H., Zhang, J.Y., Che, W.C., & Wang, Y. (2016). A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology. Food Chemistry, 206, 44–49. doi:10.1016/j.foodchem.2016.03.015
  • Zhang, J., & Wang, Z.W. (2013). Soluble dietary fiber from Canna edulis Ker by-product and its physicochemical properties. Carbohydrate Polymers, 92(1), 289–296. doi:10.1016/j.carbpol.2012.09.067
  • Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98–103. doi:10.1016/j.jcs.2011.04.001