2,746
Views
15
CrossRef citations to date
0
Altmetric
Articles

The degree of protein aggregation in whey protein isolate-based dispersions modifies their surface and rheological properties

El grado de denaturación de proteínas en dispersiones basadas en aislado de proteínas de suero (ASP) modifica sus propiedades superficiales y reológicas

, , &
Pages 146-155 | Received 09 Feb 2017, Accepted 18 Jul 2017, Published online: 04 Aug 2017

References

  • Agarwal, S., Beausire, R.L.W., Patel, S., & Patel, H. (2015). Innovative uses of milk protein concentrates in product development. Journal of Food Science, 80(S1), A23–A29. doi:10.1111/1750-3841.12807
  • Bals, A., & Kulozik, U. (2003). Effect of pre-heating on the foaming properties of whey protein isolate using a membrane foaming apparatus. International Dairy Journal, 13(11), 903–908. doi:10.1016/S0958-6946(03)00111-0
  • Boland, M. (2011). Whey proteins. In G.O. Phillips & P.A. Williams (Eds.), Handbook of food proteins (pp. 30–55). New York, NY: Woodhead Publishing Limited.
  • Davis, J.P., & Foegeding, E.A. (2004). Foaming and interfacial properties of polymerized whey protein isolate. Journal of Food Science, 69(5), C404–C410. doi:10.1111/j.1365-2621.2004.tb10706.x
  • Devries, M.C., & Phillips, S.M. (2015). Supplemental protein in support of muscle mass and health: Advantage whey. Journal of Food Science, 80(S1), A8–A15. doi:10.1111/1750-3841.12802
  • Germain, J.C., & Aguilera, J.M. (2014). Multi-scale properties of protein-stabilized foams. Food Structure, 1(1), 55–70. doi:10.1016/j.foostr.2014.01.001
  • Guyomarc’h, F., Famelart, M.-H., Henry, G., Gulzar, M., Leonil, J., Hamon, P., … Croguennec, T. (2015). Current ways to modify the structure of whey proteins for specific functionalities - a review. Dairy Science & Technology, 95(6), 795–814. doi:10.1007/s13594-014-0190-5
  • Kerstens, S., Murray, B.S., & Dickinson, E. (2006). Microstructure of β-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: Influence of heating. Journal of Colloid and Interface Science, 296(1), 332–341. doi:10.1016/j.jcis.2005.08.046
  • Kulozik, U. (2007). Structuring dairy products by means of processing and matrix design. In J.M. Aguilera & P.J. Lillford (Eds.), Food materials science. Principles and practice (pp. 439–473). New York, NY: Springer.
  • Mahmoudi, N., Axelos, M.A.V., & Riaublanc, A. (2011). Interfacial properties of fractal and spherical whey protein aggregates. Soft Matter, 7, 7643–7654. doi:10.1039/C1SM05262D
  • Martinez, M.J., Carrera-Sánchez, C., Rodríguez-Patino, J.M., & Pilosof, A.M.R. (2009). Interactions in the aqueous phase and adsorption at the air–water interface of caseinoglycomacropeptide (GMP) and β-lactoglobulin mixed systems. Colloids and Surfaces B: Biointerfaces, 68(1), 39–47. doi:10.1016/j.colsurfb.2008.09.006
  • Mezzenga, R., Schurtenberger, P., Burbidge, A., & Michel, M. (2005). Understanding foods as soft materials. Nature Materials, 4, 729–740. doi:10.1038/nmat1496
  • Mleko, S., & Foegeding, E.A. (1999). Formation of whey protein polymers: Effects of a two-step heating process on rheological properties. Journal of Texture Studies, 30(2), 137–149. doi:10.1111/j.1745-4603.1999.tb00207.x
  • Nicolai, T., Britten, M., & Schmitt, C. (2011). β-lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962. doi:10.1016/j.foodhyd.2011.02.006
  • Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18(4), 249–256. doi:10.1016/j.cocis.2013.03.001
  • Nicorescu, I., Loisel, C., Vial, C., Riaublanc, A., Djelveh, G., Cuvelier, G., & Legrand, J. (2008). Combined effect of dynamic heat treatment and ionic strength on denaturation and aggregation of whey proteins - Part I. Food Research International, 41(7), 707–713. doi:10.1016/j.foodres.2008.05.003
  • Orrego, M., Troncoso, E., & Zúñiga, R.N. (2015). Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. Journal of Food Engineering, 163, 37–44. doi:10.1016/j.jfoodeng.2015.04.027
  • Purwanti, N., Smiddy, M., Van der Goot, A.J., De Vries, R., Alting, A., & Boom, R. (2011). Modulation of rheological properties by heat-induced aggregation of whey protein solution. Food Hydrocolloids, 25(6), 1482–1489. doi:10.1016/j.foodhyd.2011.02.027
  • Rullier, B., Novales, B., & Axelos, M.A.V. (2008). Effect of protein aggregates on foaming properties of α-lactoglobulin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330(2–3), 96–102. doi:10.1016/j.colsurfa.2008.07.040
  • Ryan, K.N., Zhong, Q., & Foegeding, E.A. (2013). Use of whey protein soluble aggregates for thermal stability - A hypothesis paper. Journal of Food Science, 78(8), R1105–R1115. doi:10.1111/1750-3841.12207
  • Schmitt, C., Bovay, C., & Rouvet, M. (2014). Bulk self-aggregation drives foam stabilization properties of whey protein microgels. Food Hydrocolloids, 42(1), 139–148. doi:10.1016/j.foodhyd.2014.03.010
  • Schmitt, C., Bovay, C., Rouvet, M., Shojaei-Rami, S., & Kolodziejczyk, E. (2007). Whey protein soluble aggregates from heating with NaCl: Physicochemical, interfacial, and foaming properties. Langmuir, 23(8), 4155–4166. doi:10.1021/la0632575
  • Tamm, F., Sauer, G., Scampicchio, M., & Drusch, S. (2012). Pendant drop tensiometry for the evaluation of the foaming properties of milk-derived proteins. Food Hydrocolloids, 27(2), 371–377. doi:10.1016/j.foodhyd.2011.10.013
  • Tripp, B.C., Magda, J.J., & Andrade, J.D. (1995). Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: Concentration dependence, mass-transfer considerations, and adsorption kinetics. Journal of Colloid and Interface Science, 173(1), 16–27. doi:10.1006/jcis.1995.1291
  • Wang, Z., & Narsimhan, G. (2005). Interfacial dilatational elasticity and viscosity of β-lactoglobulin at air−water interface using pulsating bubble tensiometry. Langmuir, 21(10), 4482–4489. doi:10.1021/la047374g
  • Zhu, H., & Damodaran, S. (1994). Heat-induced conformational changes in whey protein isolate and its relation to foaming properties. Journal of Agricultural and Food Chemistry, 42(4), 846–855. doi:10.1021/jf00040a002
  • Zúñiga, R.N., Kulozik, U., & Aguilera, J.M. (2011). Ultrasonic generation of aerated gelatin gels stabilized by whey protein β-lactoglobulin. Food Hydrocolloids, 25(5), 958–967. doi:10.1016/j.foodhyd.2010.09.010
  • Zúñiga, R.N., Skurtys, O., Osorio, F., Aguilera, J.M., & Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films: Effect of their microstructure. Carbohydrate Polymers, 90(2), 1147–1158. doi:10.1016/j.carbpol.2012.06.066
  • Zúñiga, R.N., Tolkach, A., Kulozik, U., & Aguilera, J.M. (2010). Kinetics of formation and physicochemical characterization of β-lactoglobulin aggregates. Journal of Food Science, 75(5), E261–E268. doi:10.1111/j.1750-3841.2010.01805.x