2,107
Views
16
CrossRef citations to date
0
Altmetric
Articles

Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction

Mejoramiento de la actividad antioxidante de la proteína hidrolizada de Morchella esculenta a partir de la aplicación de una reacción de glicosilación optimizada

, , , &
Pages 238-246 | Received 17 Jun 2017, Accepted 05 Oct 2017, Published online: 15 Jan 2018

References

  • Ajmal, M., Akram, A., Ara, A., Akhund, S., & Nayyar, B. G. (2015). Morchella esculenta: An edible and health beneficial mushroom. Pakistan Journal of Food Sciences, 25(2), 71–78.
  • Al-Amiery, A. A., Al-Majedy, Y. K., Kadhum, A. A. H., & Mohamad, A. B. (2015). Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PloS One, 10(7), e0132175. doi:10.1371/journal.pone.0132175
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(12), 248–254. doi:10.1016/0003-2697(76)90527-3
  • Chawla, S. P., Chander, R., & Sharma, A. (2009). Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins. Food Chemistry, 116(1), 122–128. doi:10.1016/j.foodchem.2009.01.097
  • Chen, X. M., & Kitts, D. D. (2011). Antioxidant and anti-inflammatory activities of Maillard reaction products isolated from sugar–amino acid model systems. Journal of Agricultural & Food Chemistry, 59(20), 11294–11303. doi:10.1021/jf2031583
  • Dworschák, E., & Carpenter, K. J. (1980). Nonenzyme browning and its effect on protein nutrition. Critical Reviews in Food Science and Nutrition, 13(1), 1–40. doi:10.1080/10408398009527283
  • Fu, R., Zhang, Y., Guo, Y., & Chen, F. (2014). Antioxidant and tyrosinase inhibition activities of the ethanol-insoluble fraction of water extract of Sapium sebiferum (L.) Roxb. leaves. South African Journal of Botany, 93, 98–104. doi:10.1016/j.sajb.2014.04.003
  • García-Pascual, P., Sanjuán, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modelling. Journal of Food Engineering, 72(4), 346–353. doi:10.1016/j.jfoodeng.2004.12.014
  • Geng, X., Cui, B., Li, Y., Jin, W., An, Y., Zhou, B., … Li, B. (2014). Preparation and characterization of ovalbumin and carboxymethyl cellulose conjugates via glycosylation. Food Hydrocolloids, 37, 86–92. doi:10.1016/j.foodhyd.2013.10.027
  • Gu, F. L., Jin, M. K., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–Glucose. Food Chemistry, 120(2), 505–511. doi:10.1016/j.foodchem.2009.10.044
  • Hong, X., Meng, J., & Lu, R. R. (2015). Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose. Journal of the Science of Food & Agriculture, 95(1), 66–71. doi:10.1002/jsfa.6682
  • Huang, X., Tu, Z., Xiao, H., Wang, H., Zhang, L., Hu, Y. M., … Niu, P. P. (2012). Characteristics and antioxidant activities of ovalbumin glycated with different saccharides under heat moisture treatment. Food Research International, 48(2), 866–872. doi:10.1016/j.foodres.2012.06.036
  • Jiang, Z., Wang, L., Che, H., & Tian, B. (2014). Effects of temperature and pH on angiotensin-I-converting enzyme inhibitory activity and physicochemical properties of bovine casein peptide in aqueous Maillard reaction system. LWT - Food Science and Technology, 59(1), 35–42. doi:10.1016/j.lwt.2014.06.013
  • Kim, J. S., & Lee, Y. S. (2009). Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time. Food Chemistry, 116(1), 227–232. doi:10.1016/j.foodchem.2009.02.038
  • LeDuy, A., Kosaric, N., & Zajic, J. E. (1974). Morel mushroom mycelium growth in waste sulfite liquors as source of protein and flavouring. Canadian Institute of Food Science and Technology Journal, 7(1), 44–50. doi:10.1016/s0315-5463(74)73845-7
  • Li, S., Sang, Y., Zhu, D., Yang, Y., Lei, Z., & Zhang, Z. (2013). Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue. Industrial Crops & Products, 50(10), 666–672. doi:10.1016/j.indcrop.2013.07.034
  • Liu, D., Sheng, J., Li, Z., Qi, H., Sun, Y., Duan, Y., & Zhang, W. F. (2013). Antioxidant activity of polysaccharide fractions extracted from Athyrium multidentatum (Doll.) Ching. International Journal of Biological Macromolecules, 56, 1–5. doi:10.1016/j.ijbiomac.2013.01.023
  • Liu, J., Ru, Q., & Ding, Y. (2012). Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Research International, 49(1), 170–183. doi:10.1016/j.foodres.2012.07.034
  • Liu, J., Xu, Q., Zhang, J., Zhao, P., & Ding, Y. (2016). Characterization of silver carp (Hypophthalmichthys molitrix) myosin protein glycated with konjac oligo-glucomannan. Food Hydrocolloids, 57, 114–121. doi:10.1016/j.foodhyd.2016.01.019
  • Luo, Y., Ling, Y., Wang, X., Han, Y., Zeng, X., & Sun, R. (2013). Maillard reaction products from chitosan–xylan ionic liquid solution. Carbohydrate Polymers, 98(1), 835–841. doi:10.1016/j.carbpol.2013.06.023
  • Meng, F., Liu, X., Jia, L., Song, Z., Deng, P., & Fan, K. (2010). Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydrate Polymers, 79(3), 700–704. doi:10.1016/j.carbpol.2009.09.032
  • Moeckel, U., Duerasch, A., Weiz, A., Ruck, M., & Henle, T. (2016). Glycation reactions of casein micelles. Journal of Agricultural and Food Chemistry, 64(14), 2953–2961. doi:10.1021/acs.jafc.6b00472
  • Moisés, L. J., Corzomartinez, M., Villamiel, M., Javier, M. F., & Sanz, Y. (2011). Maillard-type glycoconjugates from dairy proteins inhibit adhesion of Escherichia coli to mucin. Food Chemistry, 129(4), 1435–1443. doi:10.1016/j.foodchem.2011.05.102
  • Nitha, B., & Janardhanan, K. K. (2008). Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food & Chemical Toxicology, 46(9), 3193–3199. doi:10.1016/j.fct.2008.07.007
  • Nitha, B., Meera, C. R., & Janardhanan, K. K. (2007). Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Current Science, 92(2), 235–239.
  • Niu, L. Y., Jiang, S. T., Pan, L. J., & Zhai, Y. S. (2011). Characteristics and functional properties of wheat germ protein glycated with saccharides through Maillard reaction. International Journal of Food Science & Technology, 46(10), 2197–2203. doi:10.1111/j.1365-2621.2011.02737.x
  • Nooshkam, M., & Madadlou, A. (2016). Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry, 192, 831–836. doi:10.1016/j.foodchem.2015.07.094
  • Pallares, I., Vendrell, J., Aviles, F. X., & Ventura, S. (2004). Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin. Journal of Molecular Biology, 342(1), 321–331. doi:10.1016/j.jmb.2004.06.089
  • Rao, Q., Kamdar, A. K., & Labuza, T. P. (2013). Storage stability of food protein hydrolysates—a review. Critical Reviews in Food Science & Nutrition, 56(7), 1169–1192. doi:10.1080/10408398.2012.758085
  • Salla, S., Sunkara, R., Ogutu, S., Walker, L. T., & Verghese, M. (2016). Antioxidant activity of papaya seed extracts against H2O2 induced oxidative stress in HepG2 cells. LWT - Food Science and Technology, 66, 293–297. doi:10.1016/j.lwt.2015.09.008
  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. doi:10.1016/j.peptides.2010.06.020
  • Sun, W., Zhao, M., Cui, C., Zhao, Q., & Bao, Y. (2010). Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Science, 86(2), 276–282. doi:10.1016/j.meatsci.2010.04.014
  • Van, D. V. C., Muresan, S., Gruppen, H., De Bont, D. B., Merck, K. B., & Voragen, A. G. (2002). FTIR spectra of whey and casein hydrolysates in relation to their functional properties. Journal of Agricultural & Food Chemistry, 50(24), 6943–6950. doi:10.1021/jf020387k
  • Vhangani, L. N., & Van Wyk, J. (2016). Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chemistry, 208, 301–308. doi:10.1016/j.foodchem.2016.03.100
  • Wang, G. H., Chen, C. Y., Lin, C. P., Huang, C. L., Lin, C. H., Cheng, C. Y., & Chuang, Y. C. (2016). Tyrosinase inhibitory and antioxidant activities of three Bifidobacterium bifidum-fermented herb extracts. Industrial Crops & Products, 89, 376–382. doi:10.1016/j.indcrop.2016.05.037
  • Wang, W. Q., Bao, Y. H., & Chen, Y. (2013). Characteristics and antioxidant activity of water-soluble Maillard reaction products from interactions in a whey protein isolate and sugars system. Food Chemistry, 139(1–4), 355–361. doi:10.1016/j.foodchem.2013.01.072
  • Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry, 93(2), 273–278. doi:10.1016/j.foodchem.2004.09.043
  • Yin, C., Yang, L., Zhao, H., & Li, C.-P. (2014). Improvement of antioxidant activity of egg white protein by phosphorylation and conjugation of epigallocatechin gallate. Food Research International, 64, 855–863. doi:10.1016/j.foodres.2014.08.020
  • Yin, Z., Sun, Q., Zhang, X., & Hao, J. (2014). Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity. Journal of the Science of Food & Agriculture, 94(7), 1332–1339. doi:10.1002/jsfa.6415
  • Zeng, Y., Zhang, H., Guan, Y., Zhang, L., & Sun, Y. (2013). Comparative study on the effects of d-psicose and d-fructose in the Maillard reaction with β-lactoglobulin. Food Science & Biotechnology, 22(2), 341–346. doi:10.1007/s10068-013-0086-9
  • Zhuang, H., Tang, N., & Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods, 5(4), 1810–1821. doi:10.1016/j.jff.2013.08.013