4,912
Views
17
CrossRef citations to date
0
Altmetric
Articles

Probiotic characteristics of exopolysaccharides-producing Lactobacillus isolated from some traditional Malaysian fermented foods

Características probióticas de Lactobacillus productora de exopolisacáridos, aislada de algunos alimentos fermentados y tradicionales de Malasia

ORCID Icon, , , , &
Pages 287-298 | Received 11 Jul 2017, Accepted 30 Oct 2017, Published online: 15 Jan 2018

References

  • Adams, M. R., & Hall, C. J. (1988). Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science & Technology, 23, 287–292. doi:10.1111/j.1365-2621.1988.tb00581.x
  • Alhudhud, M., Humphreys, P., & Laws, A. (2014). Development of a growth medium suitable for exopolysaccharide production and structural characterisation by Bifidobacterium animalis ssp. lactis AD011. Journal of Microbiological Methods, 100, 93–98. doi:10.1016/j.mimet.2014.02.021
  • Anandharaj, M., Sivasankari, B., Santhanakaruppu, R., Manimaran, M., Rani, R. P., & Sivakumar, S. (2015). Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Research in Microbiology, 166, 428–439. doi:10.1016/j.resmic.2015.03.002
  • Angmo, K., Kumari, A., & Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Science and Technology, 66, 428–435. doi:10.1016/j.lwt.2015.10.057
  • Aween, M. M., Hassan, Z., Muhialdin, B. J., Noor, H. M., & Eljamel, Y. A. (2012). Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. American Journal of Applied Sciences, 9, 807–817. doi:10.3844/ajassp.2012.807.817
  • Badel, S., Bernardi, T., & Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29, 54–66. doi:10.1016/j.biotechadv.2010.08.11
  • Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., … Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21, 695–701. doi:10.1016/j.foodcont.2009.10.010
  • Bautista-Gallego, J., Arroyo-López, F. N., Rantsiou, K., Jiménez-Díaz, R., Garrido-Fernández, A., & Cocolin, L. (2013). Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International, 50, 135–142. doi:10.1016/j.foodres.2012.10.004
  • Buddington, R. (2009). Using probiotics and prebiotics to manage the gastrointestinal tract ecosystem. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and probiotics science and technology (pp. 1–31). New York, NY: Springer.
  • Caggianiello, G., Kleerebezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology, 100, 3877–3886. doi:10.1007/s00253-016-7471-2
  • Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F., Zhao, J., … Chen, W. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35, 65–72. doi:10.1016/j.foodcont.2013.06.027
  • Collado, M. C., Meriluoto, J., & Salminen, S. (2007). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065–1073. doi:10.1007/s00217-007-0632-x
  • Conner, D. E., & Kotrola, J. S. (1995). Growth and survival of Escherichia coli O157: H7 under acidic conditions. Applied and Environmental Microbiology, 61, 382–385.
  • Cruz-Guerrero, A., Hernández-Sánchez, H., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Figueroa-González, I. (2014). Commercial probiotic bacteria and prebiotic carbohydrates: A fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. Journal of the Science of Food and Agriculture, 94, 2246–2252. doi:10.1002/jsfa.6549
  • D’Aimmo, M. R., Modesto, M., & Biavati, B. (2007). Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. International Journal of Food Microbiology, 115, 35–42. doi:10.1016/j.ijfoodmicro.2006.10.003
  • Danielsen, M., & Wind, A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology, 82, 1–11. doi:10.1016/S0168-1605(02)00254-4
  • Del Piano, M., Morelli, L., Strozzi, G. P., Allesina, S., Barba, M., Deidda, F., … Capurso, L. (2006). Probiotics: From research to consumer. Digestive and Liver Disease, 38, S248–S255. doi:10.1016/S1590-8658(07)60004-8
  • Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31, 438–442. doi:10.1046/j.1365-2672.2000.00845.x
  • Domingos-Lopes, M. F. P., Stanton, C., Ross, P. R., Dapkevicius, M. L. E., & Silva, C. C. G. (2017). Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiology, 63, 178–190. doi:10.1016/j.fm.2016.11.014
  • Doyle, R. J., & Rosenberg, M. (1995). Measurement of microbial adhesion to hydrophobic substrata. Methods in Enzymology, 253, 542–550. doi:10.1016/S0076-6879(95)53046-0
  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017
  • EFSA. (2007). Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA1. Opinion of the Scientific Committee (Question No EFSA-Q-2005-293. The EFSA Journal, 587, 1–16. Retrieved from www.efsa.europa.eu/en/scdocs/doc/587.pdf
  • Eriksen, E. K., Holm, H., Jensen, E., Aaboe, R., Devold, T. G., Jacobsen, M., & Vegarud, G. E. (2010). Different digestion of caprine whey proteins by human and porcine gastrointestinal enzymes. British Journal of Nutrition, 104, 374–381. doi:10.1017/S0007114510000577
  • Ferreira, C. L., Grześkowiak, Ł., Collado, M. C., & Salminen, S. (2011). In vitro evaluation of Lactobacillus gasseri strains of infant origin on adhesion and aggregation of specific pathogens. Journal of Food Protection, 74, 1482–1487. doi:10.4315/0362-028X.JFP-11-074
  • Hidalgo-Cantabrana, C., López, P., Gueimonde, M., De Los Reyes-Gavilán, G., Suárez, A., Margolles, A., & Ruas-Madiedo, P. (2012). Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4, 227–237. doi:10.1007/s12602-012-9110-2
  • Hor, Y. Y., & Liong, M. T. (2014). Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatologica Sinica, 32, 141–147. doi:10.1016/j.dsi.2014.03.001
  • Imran, M. Y. M., Reehana, N., Jayaraj, K. A., Ahamed, A. A. P., Dhanasekaran, D., Thajuddin, N., … Muralitharan, G. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93, 731–745. doi:10.1016/j.ijbiomac.2016.09.007
  • Ismail, B., & Nampoothiri, K. M. (2010). Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of Microbiology, 192, 1049–1057. doi:10.1007/s00203-010-0636-y
  • Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V., & Arul, V. (2013). Probiotics and its functionally valuable products – A review. Critical Reviews in Food Science and Nutrition, 53, 641–658. doi:10.1080/10408398.2011.553752
  • Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., Batish, V. K., & Sechi, L. A. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE, 4(12), e8099. doi:10.1371/journal.pone.0008099
  • Kos, B. V. Z. E., Šušković, J., Vuković, S., Šimpraga, M., Frece, J., & Matošić, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94, 981–987. doi:10.1046/j.1365-2672.2003.01915.x
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic Acid Techniques in Bacterial Systematics(pp. 115–175). Chichester: Wiley.
  • Leite, A. M. O., Miguel, M. A. L., Peixoto, R. S., Ruas-Madiedo, P., Paschoalin, V. M. F., Mayo, B., & Delgado, S. (2015). Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 98, 3622–3632. doi:10.3168/jds.2014-9265
  • Looijesteijn, P. J., Trapet, L., De Vries, E., Abee, T., & Hugenholtz, J. (2001). Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology, 64(1–2), 71–80. doi:10.1016/S0168-1605(00)00437-2
  • Marteau, P. M., Minekus, M., Havenaar, R., & Huis, J. H. J. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science, 80, 1031–1037. doi:10.3168/jds.S0022-0302(97)76027-2
  • Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32, 1216–1236. doi:10.1016/j.biotechadv.2014.07.005
  • McDonald, I. R., Kenna, E. M., & Murrell, J. C. (1995). Detection of methanotrophic bacteria in environmental samples with the PCR. Applied and Environmental Microbiology,  61, 116-121.
  • Ng, S. Y., Koon, S. S., Padam, B. S., & Chye, F. Y. (2015). Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CyTA-Journal of Food, 13, 563–572. doi:10.1080/19476337.2015.1020342
  • Nishimura, J. (2014). Exopolysaccharides Produced from Lactobacillus delbrueckii subsp. bulgaricus. Advances in Microbiology, 4, 1017–1023. doi:10.4236/aim.2014.414112
  • Nivoliez, A., Veisseire, P., Alaterre, E., Dausset, C., Baptiste, F., Camarès, O., … Bornes, S. (2015). Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®. Applied Microbiology and Biotechnology, 99, 399–411. doi:10.1007/s00253-014-6110-z
  • Pan, X., Chen, F., Wu, T., Tang, H., & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20, 598–602. doi:10.1016/j.foodcont.2008.08.019
  • Patel, A., & Prajapat, J. B. (2013). Food and health applications of exopolysaccharides produced by lactic acid bacteria. Advances in Dairy Research, 1, 1–8. doi:10.4172/2329-888x.1000107.
  • Patel, A. R., Lindström, C., Patel, A., Prajapati, J. B., & Holst, O. (2012). Screening and isolation of exopolysaccharide producing lactic acid bacteria from vegetables and indigenous fermented foods of Gujarat, India. International Journal of Fermented Foods, 1, 87–101.
  • Peres, C. M., Alves, M., Hernandez-Mendoza, A., Moreira, L., Silva, S., Bronze, M. R., … Malcata, F. X. (2014). Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT-Food Science and Technology, 59, 234–246. doi:10.1016/j.lwt.2014.03.003
  • Pinto, M. G. V., Franz, C. M., Schillinger, U., & Holzapfel, W. H. (2006). Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. International Journal of Food Microbiology, 109, 205–214. doi:10.1016/j.ijfoodmicro.2006.01.029
  • Polak-Berecka, M., Choma, A., Waśko, A., Górska, S., Gamian, A., & Cybulska, J. (2015). Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers, 117, 501–509. doi:10.1016/j.carbpol.2014.10.006
  • Polak-Berecka, M., Waśko, A., & Kubik-Komar, A. (2014). Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N. Polish Journal of Microbiology, 63, 253–257.
  • Prasad, J., Gill, H., Smart, J., & Gopal, P. K. (1998). Selection and characterisation of Lactobacillus and bifidobacterium strains for use as probiotics. International Dairy Journal, 8, 993–1002. doi:10.1016/S0958-6946(99)00024-2
  • Ramos, C. L., Thorsen, L., Schwan, R. F., & Jespersen, L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiology, 36, 22–29. doi:10.1016/j.fm.2013.03.010
  • Roberts, C. M., Fett, W. F., Osman, S. F., Wijey, C., O’Connor, J. V., & Hoover, D. G. (1995). Exopolysaccharide production by Bifidobacterium longum BB-79. Journal of Applied Bacteriology, 78, 463–468. doi:10.1111/j.1365-2672.1995.tb03085.x
  • Ruas-Madiedo, P., Moreno, J. A., Salazar, N., Delgado, S., Mayo, B., Margolles, A., & De Los Reyes-Gavilan, C. G. (2007). Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Applied and Environmental Microbiology, 73, 4385–4388. doi:10.1128/AEM.02470-06
  • Ruas-Madiedo, P., Salazar, N., & De Los Reyes-Gavilán, C. G. (2009). Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. In A. P. Moran, O. Holst, P. J. Brennan, & M. von Itzstein (Eds.), Microbial Glycobiology, Structures, Relevance and Applications (pp. 887–902). London: Academic Press.
  • Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2015). Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6, 679–693. doi:10.1039/C4FO00529E
  • Sánchez, J. I., Martínez, B., Guillén, R., Jiménez-Díaz, R., & Rodríguez, A. (2006). Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Applied and Environmental Microbiology, 72, 7495–7502. doi:10.1128/AEM.01078-06
  • Schillinger, U., Guigas, C., & Holzapfel, W. H. (2005). In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. International Dairy Journal, 15, 1289–1297. doi:10.1016/j.idairyj.2004.12.008
  • Servin, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. Fems Microbiology Reviews, 28, 405-440. doi: 10.1016/j.femsre.2004.01.003
  • Shah, N. P., & Lankaputhra, W. E. (1997). Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. International Dairy Journal, 7, 349–356. doi:10.1016/S0958-6946(97)00023-X
  • Sharma, P., Tomar, S. K., Sangwan, V., Goswami, P., & Singh, R. (2016). Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. Journal of Food Safety, 36, 38–51. doi:10.1111/jfs.12211
  • Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Jahromi, M. F., & Ho, Y. W. (2014). Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Research International, 2014, 1–16. doi:10.1155/2014/927268
  • Singh, T. P., Kaur, G., Malik, R. K., Schillinger, U., Guigas, C., & Kapila, S. (2012). Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics and Antimicrobial Proteins, 4, 47–58. doi:10.1007/s12602-012-9090-2
  • Španová, A., Dráb, V., Turková, K., Špano, M., Burdychová, R., Šedo, O., … Rittich, B. (2015). Selection of potential probiotic Lactobacillus strains of human origin for use in dairy industry. European Food Research and Technology, 241, 861–869. doi:10.1007/s00217-015-2511-1
  • Tambekar, D. H., & Bhutada, S. A. (2010). An evaluation of probiotic potential of Lactobacillus sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections. Recent Research in Science and Technology, 2, 82–88.
  • Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2013). Antipathogenic activity of probiotics against Salmonella typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 24, 60–65. doi:10.1016/j.anaerobe.2013.09.011
  • Todorov, S. D., Botes, M., Guigas, C., Schillinger, U., Wiid, I., Wachsman, M. B., Holzapfel, W. H., & Dicks, L. M. T. (2008). Boza, a natural source of probiotic lactic acid bacteria. Journal of Applied Microbiology, 104, 465–477. doi:10.1111/j.1365-2672.2007.03558.x
  • Torino, M. I., Font de Valdez, G., & Mozzi, F. (2015). Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Frontier in Microbiolology, 6, 1–16. doi:10.3389/fmicb.2015.00834
  • Tulumoglu, S., Yuksekdag, Z. N., Beyatli, Y., Simsek, O., Cinar, B., & Yaşar, E. (2013). Probiotic properties of lactobacilli species isolated from children’s feces. Anaerobe, 24, 36–42. doi:10.1016/j.anaerobe.2013.09.006
  • Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96, 4252–4257. doi:10.3168/jds.2013-6547
  • Van der Meulen, R., Grosu-Tudor, S., Mozzi, F., Vaningelgem, F., Zamfir, M., De Valdez, G. F., & De Vuyst, L. (2007). Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. International Journal of Food Microbiology, 118, 250–258. doi:10.1016/j.ijfoodmicro.2007.07.014
  • Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: A comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International, 36, 895–904. doi:10.1016/S0963-9969(03)00098-X
  • Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., & Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36, 254–260. doi:10.1016/j.cyto.2007.01.003
  • Wang, C.-Y., Lin, P.-R., Ng, C.-C., & Shyu, Y.-T. (2010). Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe, 16, 578–585. doi:10.1016/j.anaerobe.2010.10.003
  • Wang, J., Li, B., Zhou, L., Zhang, X., & Shi, P. (2016). Probiotic potential and function of a Lactobacillus strain L1 isolated from Silage. Journal of Food Safety. doi:10.1111/jfs.12338
  • WHO. (2001). Health and nutritional properties of probiotics in food including powdered milk with live lactic acid bacteria: A joint FAO/WHO expert consultation report. Retrieved December 3, 2016, from World Health Orgnization (WHO) http://isappscience.org/wp-content/uploads/2015/12/FAO-WHO-2001-Probiotics-Report.pdf