1,340
Views
2
CrossRef citations to date
0
Altmetric
Articles

The effect of soluble saccharides on the activity of key enzymes linked to methyl ketone synthesis in Lactococcus lactis

Efecto de sacáridos solubles en la actividad de enzimas clave vinculadas a la síntesis de metil cetona en Lactococcus lactis

&
Pages 325-330 | Received 26 Jun 2017, Accepted 01 Nov 2017, Published online: 15 Jan 2018

References

  • Baltazar, M. F., Dickinson, F. M., & Ratledge, C. (1999). Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: Enzymology and characterization of intermediates by HPLC. Microbiology, 145(1), 271–278. doi:10.1099/13500872-145-1-271
  • Binstock, J. F., & Schulz, H. (1981). Fatty acid oxidation complex from Escherichia coli. Methods in Enzymology, 71, 403–411. doi:10.1016/0076-6879(81)71051-6
  • Brandsma, J. B., Kraats, I. V. D., Abee, T., Zwietering, M. H., & Meijer, W. C. (2012). Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production. Food Microbiology, 29(1), 27–32. doi:10.1016/j.fm.2011.08.012
  • Bremer, J., & Wojtczak, A. B. (1972). Factors controlling the rate of fatty acid β-oxidation in rat liver mitochondria. Biochimica Et Biophysica Acta (Bba)-Lipids and Lipid Metabolism, 280(4), 515–530. doi:10.1016/0005-2760(72)90131-2
  • Buňková, L., Buňka, F., Pollaková, E., Podešvová, T., & Dráb, V. (2011). The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylaseactivity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis. International Journal of Food Microbiology, 147(2), 112–119. doi:10.1016/j.ijfoodmicro.2011.03.017
  • Burgain, J., Scher, J., Francius, G., Borges, F., Corgneau, M., Revol-Junelles, A. M., … Gaiani, C. (2014). Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Advances in Colloid and Interface Science, 213, 21–35. doi:10.1016/j.cis.2014.09.005
  • Cocaign-Bousquet, M., Even, S., Lindley, N. D., & Loubière, P. (2002). Anaerobic sugar catabolism in Lactococcus lactis: Genetic regulation and enzyme control over pathway flux. Applied Microbiology and Biotechnology, 60(1–2), 24–32. doi:10.1007/s00253-002-1065-x
  • De Vos, W. M., & Hugenholtz, J. (2004). Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends in Biotechnology, 22(2), 72–79. doi:10.1016/j.tibtech.2003.11.011
  • Engelvin, G., Feron, G., Perrin, C., Mollé, D., & Talon, R. (2000). Identification of β-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain. FEMS Microbiology Letters, 190(1), 115–120. doi:10.1111/j.1574-6968.2000.tb09272.x
  • Feron, G., Blin-Perrin, C., Krasniewski, I., Mauvais, G. V., & Lherminier, J. (2005). Metabolism of fatty acid in yeast: Characterisation of β-oxidation and ultrastructural changes in the genus Sporidiobolu ssp. cultivated on ricinoleic acid methyl ester. FEMS Microbiology Letters, 250(1), 63–69. doi:10.1016/j.femsle.2005.06.045
  • Gadaga, T. H., Mutukumira, A. N., & Narvhus, J. A. (2001). Growth characteristics of Candida kefyr and two strains of Lactococcus lactis subsp. lactis isolated from Zimbabwean naturally fermented milk. International Journal of Food Microbiology, 70(1–2), 11–19. doi:10.1016/S0168-1605(01)00501-3
  • Garrigues, C., Loubiere, P., Lindley, N. D., & Cocaign-Bousquet, M. (1997). Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. Journal of Bacteriology, 179(17), 5282–5287. doi:10.1128/jb.179.17.5282-5287.1997
  • Hannon, J. A., Kilcawley, K. N., Wilkinson, M. G., Delahunty, C. M., & Beresford, T. P. (2007). Flavour precursor development in Cheddar cheese due to lactococcal starters and the presence and lysis of Lactobacillus helveticus. International Dairy Journal, 17(4), 316–327. doi:10.1016/j.idairyj.2006.03.001
  • Hung, Y.-H., Chan, Y.-S., Chang, Y.-S., Lee, K.-T., Hsu, H.-P., Yen, M.-C., … Lai, M.-D. (2014). Fatty acid metabolic enzyme acyl-CoA thioesterase 8 promotes the development of hepatocellular carcinoma. Oncology Reports, 31(6), 2797–2803. doi:10.3892/or.2014.3155
  • Ibrahim, S. B., Rahman, N. A., Mohamad, R., & Rahim, R. A. (2010). Effects of agitation speed, temperature, carbon and nitrogen sources on the growth of recombinant Lactococcus lactis NZ9000 carrying domain 1 of aerolysin gene. African Journal of Biotechnology, 9(33), 5392–5398. doi:10.5897/AJB10.149
  • Kabanova, N., Kazarjan, A., Stulova, I., & Vilu, R. (2009). Microcalorimetric study of growth of Lactococcus lactis IL1403 at different glucose concentrations in broth. Thermochimica Acta, 496(1–2), 87–92. doi:10.1016/j.tca.2009.07.003
  • Kabanova, N., Stulova, I., & Vilu, R. (2013). Microcalorimetric study of growth of Lactococcus lactis IL1403 at low glucose concentration in liquids and solid agar gels. Thermochimica Acta, 559, 69–75. doi:10.1016/j.tca.2013.02.013
  • Kawamoto, S., Nozaki, C., Tanaka, A., & Fukui, S. (1978). Fatty acid beta-oxidation system in microbodies of n-alkane-grown Candida tropicalis. European Journal of Biochemistry, 83(2), 609–613. doi:10.1111/j.1432-1033.1978.tb12130.x
  • Kimoto-Nira, H., Suzuki, C., Sasaki, K., Kobayashi, M., & Mizumachi, K. (2010). Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. International Journal of Food Microbiology, 143(3), 226–229. doi:10.1016/j.ijfoodmicro.2010.07.033
  • Li, L., & Ma, Y. (2013). Effect of fatty acids on the β-oxidation system and thioesterase of Lactococcus lactis subspecies lactis. Journal of Dairy Science, 96(4), 2003–2010. doi:10.3168/jds.2012-5996
  • Machii, M., Watanabe, S., Zendo, T., Chibazakura, T., Sonomoto, K., Shimizu-Kadota, M., & Yoshikawa, H. (2013). Chemically defined media and auxotrophy of the prolific L-lactic acid producer Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 115(5), 481–484. doi:10.1016/j.jbiosc.2012.11.024
  • Moffat, C., Bhatia, L., Nguyen, T., Lynch, P., Wang, M., Wang, D., … Seifert, E. L. (2014). Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. Journal of Lipid Research, 55(12), 2458–2470. doi:10.1194/jlr.M046961
  • Muthukrishnan, N., & Davim, J. P. (2009). Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. Journal of Materials Processing Technology, 209(1), 225–232. doi:10.1016/j.jmatprotec.2008.01.041
  • Neves, A. R., Pool, W. A., Kok, J., Kuipers, O. P., & Santos, H. (2005). Overview on sugar metabolism and its control in Lactococcus lactis – the input from in vivo NMR. FEMS Microbiology Reviews, 29(3), 531–554. doi:10.1016/j.fmrre.2005.04.005
  • Schulz, H. (1991). Beta oxidation of fatty acids. Biochimica Et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1081(2), 109–120. doi:10.1016/0005-2760(91)90015-A
  • Seregina, T. A., Shakulov, R. S., Debabov, V. G., & Mironov, A. S. (2010). Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Applied Biochemistry and Microbiology, 46(8), 745–754. doi:10.1134/S000368381008003X
  • Shi, W., Li, Y., Gao, X., & Fu, R. (2016). Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Biotechnology Letters, 38(3), 495–501. doi:10.1007/s10529-015-1999-6
  • Stuart, M. R., Chou, L. S., & Weimer, B. C. (1999). Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 65(2), 665–673.
  • Ueda, M., Yamanoi, K., Morikawa, T., Okada, H., & Tanaka, A. (1985). Peroxisomal localization of enzymes related to fatty acid β-oxidation in an n-alkane-grown yeast Candida tropicalis. Agricultural and Biological Chemistry, 49(6), 1821–1828. doi:10.1080/00021369.1985.10866984
  • Vrancken, G., Rimaux, T., De Vuyst, L., & Leroy, F. (2008). Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem. International Journal of Food Microbiology, 128(1), 58–66. doi:10.1016/j.ijfoodmicro.2008.08.001
  • Weeks, G., Shapiro, M., Burns, R. O., & Wakil, S. J. (1969). Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. Journal of Bacteriology, 97(2), 827–836.