7,934
Views
58
CrossRef citations to date
0
Altmetric
Articles

Modification of the structural, emulsifying, and foaming properties of an isolated pea protein by thermal pretreatment

Modificación mediante pretratamiento térmico de las propiedades estructurales, emulsificantes y espumantes de una proteína de arveja [guisante] aislada

& ORCID Icon
Pages 357-366 | Received 16 Jun 2017, Accepted 12 Nov 2017, Published online: 31 Jan 2018

References

  • Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J., & Rivera, M. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of Agricultural and Food Chemistry, 56, 4745–4750.
  • Adebiyi, A. P., & Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128, 902–908.
  • Aluko, R. E., Mofolasayo, O. A., & Watts, B. M. (2009). Emulsifying and foaming properties of pea seed flours. Journal of Agricultural and Food Chemistry, 57, 9793–9800.
  • Aluko, R. E., Yada, R. Y., Lencki, R. W., & Marangoni, A. G. (1997). Structural and functional properties of a partially purified cowpea globulin modified with protein kinase and glycopeptidase. Journal of Agricultural and Food Chemistry, 45, 2907–2913.
  • AOAC. (1990). Official methods of analysis (15th ed). Washington, DC: Association of Official Analytical Chemists Inc.
  • Campbell, L., Euston, S. R., & Ahmed, M. A. (2016). Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake. Food Chemistry, 194, 1230–1237.
  • Chang, C., Tu, S., Ghosh, S., & Nickerson, M. T. (2015). Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Research International, 77, 360–367.
  • Chao, D., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies, 45, 179-185.
  • Chihi, M.-L., Mession, J.-L., Sok, N., & Saurel, R. (2016). Heat-induced soluble protein aggregates from mixed pea globulins and β-lactoglobulin. Journal of Agricultural and Food Chemistry, 64, 2780–2791.
  • Fuhrmeister, H., & Meuser, F. (2003). Impact of processing on functional properties of protein products from wrinkled peas. Journal of Food Engineering, 56, 119–129.
  • He, X.-T., Yuan, D.-B., Wang, J.-M., & Yang, X.-Q. (2016). Thermal aggregation behavious of soy protein: Characteristics of different polypeptides and sub-units. Journal of the Science of Food and Agriculture, 96, 1121–1131.
  • Jiang, J., Zhu, B., Liu, Y., & Xiong, Y. L. (2014). Interfacial structural role of pH-shifting processed pea protein in the oxidative stability of oil/water emulsions. Journal of Agricultural and Food Chemistry, 62, 1683–1691.
  • Joshi, M., Adhikari, B., Aldred, P., Panozzo, J. F., Kasapis, S., & Barrow, C. J. (2012). Interfacial and emulsifying properties of lentil protein isolate. Food Chemistry, 134, 1343–1353.
  • Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44, 2742–2750.
  • Klassen, D. R., & Nickerson, M. T. (2012). Effect of pH on the formation of electrostatic complexes within admixtures of partially purified pea proteins (legumin and vicilin) and gum Arabic polysaccharides. Food Research International, 46, 167–176.
  • Kowalczyk, D., Gustaw, W., Świeca, M., & Baraniak, B. (2014). A study on the mechanical properties of pea protein isolate films. Journal of Food Processing and Preservation, 38, 1726–1736.
  • Koyoro, H., & Powers, J. R. (1987). Functional properties of pea globulin fractions. Cereal Chemistry, 64, 97–101.
  • Lawal, O. S., Adebowale, K. O., Ogunsanwo, B. M., Sosanwo, O. A., & Bankole, S. A. (2005). On the functional properties of globulin and albumin protein fractions and flour of African locust bean (Parkia biglobossa). Food Chemistry, 92, 681–691.
  • Liang, H.-N., & Tang, C.-H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33, 309–319.
  • Liu, C., Wang, X., Ma, H., Zhang, Z., Gao, W., & Xiao, L. (2008). Functional properties of protein isolates from soybeans stored under various conditions. Food Chemistry, 111, 29–37.
  • Liu, C. C., Tellez-Garay, A. M., & Castell-Perez, M. E. (2004). Physical and mechanical properties of peanut protein films. LWT – Food Science and Technology, 37, 731–738.
  • Lu, B.-Y., Quillien, L., & Popineau, Y. (2000). Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface-active components. Journal of the Science of Food and Agriculture, 80, 1964–1972.
  • Marinangeli, C. P. F., Kassis, A. N., & Jones, P. J. H. (2009). Glycemic responses and sensory characteristics of whole yellow pea flour added to novel functional foods. Journal of Food Science, 74, S385–S389.
  • Markwell, M. A., Hass, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and in protein samples. Analytical Biochemistry, 87, 206–210.
  • Mession, J.-L., Assifaoui, A., Cayot, P., & Saurel, R. (2012). Effect of pea proteins extraction and vicilin/legumin fractionation on the phase behavior in admixture with alginate. Food Hydrocolloids, 29, 336–346.
  • Mession, J.-L., Sok, N., Assifaoui, A., & Saurel, R. (2013). Thermal denaturation of pea globulins (Pisum sativa L.)- molecular interactions leading to heat-induced protein aggregation. Journal of Agricultural and Food Chemistry, 61, 1196–1204.
  • Nickel, G. B. (1981). Process for preparing products from legumes, Canadian Patent 1104871.
  • Nicorescu, I., Vial, C., Talansier, E., Lechevalier, V., Loisel, C., Della Valle, D., … Legrand, J. (2011). Comparative effect of thermal treatment on the physicochemical properties of whey and egg white protein foams. Food Hydrocolloids, 25, 797–808.
  • Osen, R., Toelstede, S., Eisner, P., & Schweiggert‐Weisz, U. (2015). Effect of high moisture extrusion cooking on protein–Protein interactions of pea (Pisum sativum L.) protein isolates. International Journal of Food Science and Technology, 50, 1390–1396.
  • Osen, R., Toelstede, S., Wild, F., Eisner, P., & Schweiggert-Weisz, U. (2014). High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67–74.
  • Patel, H. A., Singh, H., Anema, S. G., & Creamer, L. (2004). Effects of heat and high hydrostatic pressure treatments on the aggregation of whey proteins in whey protein concentrate solutions. Food New Zealand, 4, 29–35.
  • Peyrano, F., Speroni, F., & Avanza, M. V. (2016). Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 33, 38–46.
  • Ribotta, P. D., Colombo, A., & Rosell, C. M. (2012). Enzymatic modifications of pea protein and its application in protein-cassava and corn starch gels. Food Hydrocolloids, 27, 185–190.
  • Schmid, F. X. (1989). Spectral methods of characterizing protein conformation and conformational changes. In T. E. Creighton (Eds.). Protein structure. A practical approach (pp. 251–285). Oxford: IRL Press.
  • Shand, P. J., Ya, H., Pietrasik, Z., & Wanasundara, P. K. J. P. D. (2007). Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry, 102, 1119–1130.
  • Sosulski, F. W., & Imafidon, G. I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. Journal Of Agricultural And Food Chemistry, 38, 1351–1356.
  • Sun, C., Dai, L., Liu, F., & Gao, Y. (2016). Simultaneous treatment of heat and high pressure homogenization of zein in ethanol-water solution: Physical, structural, thermal and morphological characteristics. Innovative Food Science and Emerging Technologies, 34, 161–170.
  • Tang, C.-H., & Ma, C.-Y. (2009). Heat-induced modifications in the functional and structural properties of vicilin-rich protein isolate from kidney (Phaseolus vulgaris L.) bean. Food Chemistry, 115, 859–866.
  • Yin, S.-W., Tang, C.-T., Wen, Q.-B., & Yang, X.-Q. (2010). Functional and conformational properties of phaseolin (Phaseolus vulgaris L.) and kidney bean protein isolate: A comparative study. Journal of the Science of Food and Agriculture, 90, 599–607.
  • Zhong, Q., Wang, W., Hu, Z., & Ikeda, S. (2013). Sequential preheating and transglutaminase pretreatments improve stability of whey protein isolate at pH 7.0 during thermal sterilization. Food Hydrocolloids, 31, 306–316.