31,206
Views
161
CrossRef citations to date
0
Altmetric
Review

Green technologies for the extraction of bioactive compounds in fruits and vegetables

Tecnologías verdes para la extracción de compuestos bioactivos en frutas y verduras

, &
Pages 400-412 | Received 19 Jul 2017, Accepted 27 Nov 2017, Published online: 12 Feb 2018

References

  • Alonso-Salces, R. M., Korta, E., Barranco, A., Berrueta, L. A., Gallo, B., & Vicente, F. (2001). Pressurized liquid extraction for the determination of polyphenols in apple. Journal of Chromatography A, 933(1–2), 37–43.
  • Andrés, V., Mateo-Vivaracho, L., Guillamón, E., Villanueva, M. J., & Tenorio, M. D. (2016). High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. LWT-Food Science and Technology, 69, 123–130.
  • Angiolillo, L., Del Nobile, M. A., & Conte, A. (2015). The extraction of bioactive compounds from food residues using microwaves. Current Opinion in Food Science, 5, 93–98.
  • Araus, K. A., del Valle, J. M., Robert, P. S., & Juan, C. (2012). Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide. The Journal of Chemical Thermodynamics, 51, 190–194.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
  • Babova, O., Occhipinti, A., Capuzzo, A., & Maffei, M. E. (2016). Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. The Journal of Supercritical Fluids, 107, 358–363.
  • Bagheri, H., Yamini, Y., Safari, M., Asiabi, H., Karimi, M., & Heydari, A. (2016). Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. The Journal of Supercritical Fluids, 107, 571–580.
  • Bajer, T., Bajerová, P., Kremr, D., Eisner, A., & Ventura, K. (2015). Central composite design of pressurised hot water extraction process for extracting capsaicinoids from chili peppers. Journal of Food Composition and Analysis, 40, 32–38.
  • Barba, F. J., Boussetta, N., & Vorobiev, E. (2015). Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: Effect of high voltage electrical discharges. Innovative Food Science & Emerging Technologies, 31, 67–72.
  • Barba, F. J., Zhu, Z., Koubaa, M., de Souza Sant’Ana, A., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96–109.
  • Bennett, L. E., Jegasothy, H., Konczak, I., Frank, D., Sudharmarajan, S., & Clingeleffer, P. R. (2011). Total polyphenolics and anti-oxidant properties of selected dried fruits and relationships to drying conditions. Journal of Functional Foods, 3(2), 115–124.
  • Bier, M. C. J., Medeiros, A. B. P., de Oliveira, J. S., Côcco, L. C., da Luz Costa, J., de Carvalho, J. C., & Soccol, C. R. (2016). Liquefied gas extraction: A new method for the recovery of terpenoids from agroindustrial and forest wastes. The Journal of Supercritical Fluids, 110, 97–102.
  • Boussetta, N., Lesaint, O., & Vorobiev, E. (2013). A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innovative Food Science & Emerging Technologies, 19, 124–132.
  • Boussetta, N., & Vorobiev, E. (2014). Extraction of valuable biocompounds assisted by high voltage electrical discharges: A review. Comptes Rendus Chimie, 17(3), 197–203.
  • Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J.-L. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chemistry, 128(2), 364–370.
  • Brasil. (2002). Agência Nacional de Vigilância Sanitária. Resolução RDC nº2, de 02 de janeiro de 2002. Aprova o regulamento técnico das substâncias bioativas e probióticos isolados com alegação de propriedade funcional e ou de saúde. Brasília, DF: ANVISA.
  • Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2016). High voltage electric discharges assisted extraction of phenolic compounds from grape stems: Effect of processing parameters on flavan-3-ols, flavonols and stilbenes recovery. Innovative Food Science & Emerging Technologies, 35, 67–74.
  • Briones-Labarca, V., Plaza-Morales, M., Giovagnoli-Vicuña, C., & Jamett, F. (2015). High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT-Food Science and Technology, 60(1), 525–534.
  • Brunner, G. (2005). Supercritical fluids: Technology and application to food processing. Journal of Food Engineering, 67, 21–33.
  • Cavalcanti, R. N., Albuquerque, C. L., & Meireles, M. A. A. (2015). Supercritical CO 2 extraction of cupuassu butter from defatted seed residue: Experimental data, mathematical modeling and cost of manufacturing. Food and Bioproducts Processing, 97, 48–62.
  • Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017a). Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357–377.
  • Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017b). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560.
  • Chen, C., You, L.-J., Abbasi, A. M., Fu, X., & Liu, R. H. (2015). Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydrate Polymers, 130, 122–132.
  • Corbin, C., Fidel, T., Leclerc, E. A., Barakzoy, E., Sagot, N., Falguiéres, A., & Lainé, E. (2015). Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrasonics Sonochemistry, 26, 176–185.
  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91.
  • Correa, M., Mesomo, M. C., Pianoski, K. E., Torres, Y. R., & Corazza, M. L. (2016). Extraction of inflorescences of Musa paradisiaca L. using supercritical CO 2 and compressed propane. The Journal of Supercritical Fluids, 113, 128–135.
  • Corso, M. P., Fagundes-Klen, M. R., Silva, E. A., Cardozo Filho, L., Santos, J. N., Freitas, L. S., & Dariva, C. (2010). Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. The Journal of Supercritical Fluids, 52(1), 56–61.
  • Cravotto, G., Bicchi, C., Mantegna, S., Binello, A., Tomao, V., & Chemat, F. (2011). Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques. Natural Product Research, 25(10), 974–981.
  • Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142.
  • D’Alessandro, L. G., Dimitrov, K., Vauchel, P., & Nikov, I. (2014). Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chemical Engineering Research and Design, 92(10), 1818–1826.
  • da Silva, B. V., Barreira, J. C., & Oliveira, M. B. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science & Technology, 50, 144–158.
  • da Silva, C. M., Zanqui, A. B., Gohara, A. K., de Souza, A. H. P., Cardozo-Filho, L., Visentainer, J. V., … Matsushita, M. (2015). Compressed n-propane extraction of lipids and bioactive compounds from Perilla (Perilla frutescens). The Journal of Supercritical Fluids, 102, 1–8.
  • Dal Prá, V., Soares, J. F., Monego, D. L., Vendruscolo, R. G., Freire, D. M. G., Alexandri, M., … da Rosa, M. B. (2016). Extraction of bioactive compounds from palm (Elaeis guineensis) pressed fiber using different compressed fluids. The Journal of Supercritical Fluids, 112, 51–56.
  • de Paula, J. A. M., Brito, L. F., Caetano, K. L. F. N., de Morais Rodrigues, M. C., Borges, L. L., & da Conceição, E. C. (2016). Ultrasound-assisted extraction of azadirachtin from dried entire fruits of Azadirachta indica A. Juss (Meliaceae) and its determination by a validated HPLC-PDA method. Talanta, 149, 77–84.
  • Dias, A. L. B., Sergio, C. S. A., Santos, P., Barbero, G. F., Rezende, C. A., & Martínez, J. (2016). Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrasonics Sonochemistry, 31, 284–294.
  • Elez-Martínez, P., & Martín-Belloso, O. (2007). Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 102(1), 201–209.
  • Escobedo-Avellaneda, Z., Moure, M. P., Chotyakul, N., Torres, J. A., Welti-Chanes, J., & Lamela, C. P. (2011). Benefits and limitations of food processing by high-pressure technologies: Effects on functional compounds and abiotic contaminants Beneficios y limitaciones del procesamiento de alimentos por tecnologías de alta presión: Efectos en componentes funcionales y contaminantes abióticos. CyTA-Journal of Food, 9(4), 351–364.
  • Fardet, A., & Boirie, Y. (2014). Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutrition Reviews, 72(12), 741–762.
  • Ferrari, G., Maresca, P., & Ciccarone, R. (2011). The effects of high hydrostatic pressure on the polyphenols and anthocyanins in red fruit products. Procedia Food Science, 1, 847–853.
  • Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Science and Technology, 64(2), 1114–1122.
  • Garcia-Mendoza, M. P., Paula, J. T., Paviani, L. C., Cabral, F. A., & Martinez-Correa, H. A. (2015). Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT-Food Science and Technology, 62(1), 131–137.
  • George, J. M., Selvan, T. S., & Rastogi, N. K. (2016). High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Science & Emerging Technologies, 33, 100–107.
  • Grigoras, E. D., Lazar, G., & Elfakir, C. (2012). Bioactive compounds extraction from pomace of four apple varieties. J Eng Stud Res, 18, 96–103.
  • Guedes, A. C., Gião, M. S., Matias, A. A., Nunes, A. V., Pintado, M. E., Duarte, C. M., & Malcata, F. X. (2013). Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. Journal of Food Engineering, 116(2), 478–482.
  • Hamdan, S., Daood, H. G., Toth-Markus, M., & Illés, V. (2008). Extraction of cardamom oil by supercritical carbon dioxide and sub-critical propane. The Journal of Supercritical Fluids, 44, 25–30.
  • Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., & Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80–89.
  • Heleno, S. A., Diz, P., Prieto, M. A., Barros, L., Rodrigues, A., Barreiro, M. F., & Ferreira, I. C. (2016). Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 197, 1054–1063.
  • Herrero, M., Castro-Puyana, M., Mendiola, J. A., & Ibañez, E. (2013). Compressed fluids for the extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 43, 67–83.
  • Hiranvarachat, B., & Devahastin, S. (2014). Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. Journal of Food Engineering, 126, 17–26.
  • Inoue, T., Tsubaki, S., Ogawa, K., Onishi, K., & Azuma, J.-I. (2010). Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chemistry, 123(2), 542–547.
  • Jacotet-Navarro, M., Rombaut, N., Deslis, S., Fabiano-Tixier, A.-S., Pierre, F.-X., Bily, A., & Chemat, F. (2016). Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chemistry, 18(10), 3106–3115.
  • Jaeger, H., Schulz, M., Lu, P., & Knorr, D. (2012). Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innovative Food Science & Emerging Technologies, 14, 46–60.
  • Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495–506.
  • Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851–858.
  • Krishnan, R. Y., & Rajan, K. S. (2016). Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Separation and Purification Technology, 157, 169–178.
  • Leadbeater, N. E. (2014). Organic synthesis using microwave heating. reference module in chemistry, molecular sciences and chemical engineering. comprehensive organic synthesis II (2nd ed., Vol. 9, pp. 234–286). Retrieved from https://doi.org/10.1016/B978-0-08-097742-3.00920-4
  • Lenardão, E. J., Freitag, R. A., Dabdoub, M. J., Batista, A. C. F., & Silveira, C. D. C. (2003). Green chemistry: The 12 principles of green chemistry and it insertion in the teach and research activities. Química Nova, 26(1), 123–129.
  • Leong, S. Y., Burritt, D. J., & Oey, I. (2016). Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry, 196, 833–841.
  • Li, Y., Fabiano-Tixier, A. S., Vian, M. A., & Chemat, F. (2013). Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends in Analytical Chemistry, 47, 1–11.
  • Luengo, E., Álvarez, I., & Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84.
  • Machado, A. P. D. F., Pasquel-Reátegui, J. L., Barbero, G. F., & Martínez, J. (2015). Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Research International, 77, 675–683.
  • Malaman, F. S., Moraes, L. A. B., West, C., Ferreira, N. J., & Oliveira, A. L. (2011). Supercritical fluid extracts from the Brazilian cherry (Eugenia uniflora L.): Relationship between the extracted compounds and the characteristic flavour intensity of the fruit. Food Chemistry, 124(1), 85–92.
  • Manna, L., Bugnone, C. A., & Banchero, M. (2015). Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. The Journal of Supercritical Fluids, 104, 204–211.
  • Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786–791.
  • Meneses, M. A., Caputo, G., Scognamiglio, M., Reverchon, E., & Adami, R. (2015). Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. Journal of Food Engineering, 163, 45–53.
  • Meullemiestre, A., Petitcolas, E., Maache-Rezzoug, Z., Chemat, F., & Rezzoug, S. A. (2016). Impact of ultrasound on solid–Liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrasonics Sonochemistry, 28, 230–239.
  • Moussa-Ayoub, T. E., Jaeger, H., Youssef, K., Knorr, D., El-Samahy, S., Kroh, L. W., & Rohn, S. (2016). Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food Chemistry, 210, 249–261.
  • Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18.
  • Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry, 187, 507–516.
  • Nimet, G., da Silva, E. A., Palú, F., Dariva, C., dos Santos Freitas, L., Neto, A. M., & Cardozo Filho, L. (2011). Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: Experimental and modeling. Chemical Engineering Journal, 168(1), 262–268.
  • Oliveira, A. L., Destandau, E., Fougère, L., & Lafosse, M. (2014). Isolation by pressurised fluid extraction (PFE) and identification using CPC and HPLC/ESI/MS of phenolic compounds from Brazilian cherry seeds (Eugenia uniflora L.). Food Chemistry, 145, 522–529.
  • Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36.
  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2014). Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International, 65, 337–343.
  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848.
  • Parniakov, O, Lebovka, N. I, Van Hecke, E, & Vorobiev, E. (2014). Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (agaricus bisporus). Food And Bioprocess Technology, 7(1), 174-183.
  • Pederssetti, M. M., Palú, F., Da Silva, E. A., Rohling, J. H., Cardozo-Filho, L., & Dariva, C. (2011). Extraction of canola seed (Brassica napus) oil using compressed propane and supercritical carbon dioxide. Journal of Food Engineering, 102(2), 189–196.
  • Pessoa, A. S., Podestá, R., Block, J. M., Franceschi, E., Dariva, C., & Lanza, M. (2015). Extraction of pequi (Caryocar coriaceum) pulp oil using subcritical propane: Determination of process yield and fatty acid profile. The Journal of Supercritical Fluids, 101, 95–103.
  • Petigny, L., Périno, S., Minuti, M., Visinoni, F., Wajsman, J., & Chemat, F. (2014). Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. International Journal of Molecular Sciences, 15(5), 7183–7198.
  • Pouliot, Y., Conway, V., & Leclerc, P. L. (Eds.). (2014, April 11). Separation and concentration technologies In Food processing: principles and applications (2nd ed., pp. 33–60). doi:10.1002/9781118846315.ch3
  • Pradal, D., Vauchel, P., Decossin, S., Dhulster, P., & Dimitrov, K. (2016). Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochemistry, 32, 137–146.
  • Pronyk, C., & Mazza, G. (2009). Design and scale-up of pressurized fluid extractors for food and bioproducts. Journal of Food Engineering, 95(2), 215–226.
  • Rabelo, R. S., Machado, M. T., Martínez, J., & Hubinger, M. D. (2016). Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. Journal of Food Engineering, 178, 170–180.
  • Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G., & Vorobiev, E. (2015). Effect of alternative physical pretreatments (pulsed electric field, high voltage electrical discharges and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Separation and Purification Technology, 146, 243–251.
  • Riera, E., Golas, Y., Blanco, A., Gallego, J. A., Blasco, M., & Mulet, A. (2004). Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrasonics Sonochemistry, 11(3–4), 241–244.
  • Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from moringa oleifera lam leaves. Industrial Crops And Products, 66, 246-254.
  • Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254.
  • Romo-Hualde, A., Yetano-Cunchillos, A. I., González-Ferrero, C., Sáiz-Abajo, M. J., & González-Navarro, C. J. (2012). Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chemistry, 133(3), 1045–1049.
  • Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R. P., Saraiva, J. A., Boussetta, N., … Barba, F. J. (2015). Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends in Food Science & Technology, 45(2), 296–310.
  • Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2012). Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. Journal of Food Engineering, 108(3), 444–452.
  • Santos, K. A., Bariccatti, R. A., Cardozo-Filho, L., Schneider, R., Palú, F., da Silva, C., & da Silva, E. A. (2015). Extraction of crambe seed oil using subcritical propane: Kinetics, characterization and modeling. The Journal of Supercritical Fluids, 104, 54–61.
  • Segovia, F. J., Luengo, E., Corral-Pérez, J. J., Raso, J., & Almajano, M. P. (2015). Improvements in the aqueous extraction of polyphenols from borage (Borago officinalis L.) leaves by pulsed electric fields: Pulsed electric fields (PEF) applications. Industrial Crops and Products, 65, 390–396.
  • Seixas, F. L., Fukuda, D. L., Turbiani, F. R., Garcia, P. S., Carmen, L. D. O., Jagadevan, S., & Gimenes, M. L. (2014). Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocolloids, 38, 186–192.
  • Silva, J. R., Cantelli, K. C., Soares, M. B., Tres, M. V., Oliveira, D., Meireles, M. A. A., … Mazutti, M. A. (2015). Enzymatic hydrolysis of non-treated sugarcane bagasse using pressurized liquefied petroleum gas with and without ultrasound assistance. Renewable Energy, 83, 674–679.
  • Silva, L. P. S., & Martínez, J. (2014). Mathematical modeling of mass transfer in supercritical fluid extraction of oleoresin from red pepper. Journal of Food Engineering, 133, 30–39.
  • Silva, R. P. F. F., Rocha-Santos, T. A. P., & Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. Trac Trends in Analytical Chemistry, 76, 40–51.
  • Simha, P., Mathew, M., & Ganesapillai, M. (2016). Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from Adathoda vasica and Cymbopogon citratus. Alexandria Engineering Journal, 55(1), 141–150.
  • Simić, V. M., Rajković, K. M., Stojičević, S. S., Veličković, D. T., Nikolić, N. Č., Lazić, M. L., & Karabegović, I. T. (2016). Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Separation and Purification Technology, 160, 89–97.
  • Sivakumar, V., Ilanhtiraiyan, S., Ilayaraja, K., Ashly, A., & Hariharan, S. (2014). Influence of ultrasound on Avaram bark (Cassia auriculata) tannin extraction and tanning. Chemical Engineering Research and Design, 92(10), 1827–1833.
  • Soares, J. F., Dal Prá, V., de Souza, M., Lunelli, F. C., Abaide, E., da Silva, J. R., & Mazutti, M. A. (2015). Extraction of rice bran oil using supercritical CO2 and compressed liquefied petroleum gas. Journal of Food Engineering, 170, 58–63.
  • Sodeifian, G., Ghorbandoost, S., Sajadian, S. A., & Ardestani, N. S. (2015). Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling. The Journal of Supercritical Fluids, 110, 265–274.
  • Solana, M., Mirofci, S., & Bertucco, A. (2016). Production of phenolic and glucosinolate extracts from rocket salad by supercritical fluid extraction: Process design and cost benefits analysis. Journal of Food Engineering, 168, 35–41.
  • Soliva-Fortuny, R., Balasa, A., Knorr, D., & Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends in Food Science & Technology, 20(11–12), 544–556.
  • Song, S. M., Ham, Y. M., Ko, Y. J., Ko, E. Y., Oh, D. J., Kim, C. S., & Yoon, W. J. (2016). Anti-inflammatory activities of the products of supercritical fluid extraction from Litsea japonica fruit in RAW 264.7 cells. Journal of Functional Foods, 22, 44–51.
  • Soquetta, M. B., Stefanello, F. S., da Mota Huerta, K., Monteiro, S. S., da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chemistry, 199, 471–478.
  • Sricharoen, P., Limchoowong, N., Techawongstien, S., & Chanthai, S. (2016). A novel extraction method for β-carotene and other carotenoids in fruit juices using air-assisted, low-density solvent-based liquid–Liquid microextraction and solidified floating organic droplets. Food Chemistry, 203, 386–393.
  • Strati, I. F., Gogou, E., & Oreopoulou, V. (2015). Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing, 94, 668–674.
  • Tao, Y., Sun, D.-W., Górecki, A., Błaszczak, W., Lamparski, G., Amarowicz, R., & Jeliński, T. (2016). A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chemistry, 194, 545–554.
  • Thirugnanasambandham, K., & Sivakumar, V. (In Press). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural Sciences, 16(1), 41–48.
  • Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109.
  • Vallverdú-Queralt, A., Odriozola-Serrano, I., Oms-Oliu, G., Lamuela-Raventós, R. M., Elez-Martínez, P., & Martín-Belloso, O. (2013). Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry, 141(3), 3131–3138.
  • Vargas, R. M. F., Barroso, M. S. T., Neto, R. G., Scopel, R., Falcão, M. A., da Silva, C. F., & Cassel, E. (2013). Natural products obtained by subcritical and supercritical fluid extraction from Achyrocline satureioides (Lam) DC using CO2. Industrial Crops and Products, 50, 430–435.
  • Viganó, J., Coutinho, J. P., Souza, D. S., Baroni, N. A., Godoy, H. T., Macedo, J. A., & Martínez, J. (2016). Exploring the selectivity of supercritical CO 2 to obtain nonpolar fractions of passion fruit bagasse extracts. The Journal of Supercritical Fluids, 110, 1–10.
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303–313.
  • Wang, Y., Wang, F., Ma, X., Sun, S., Leng, F., Zhang, W., & Wang, X. (2015). Extraction, purification, characterization and antioxidant activity of polysaccharides from Piteguo fruit. Industrial Crops and Products, 77, 467–475.
  • Wu, C., Wang, F., Liu, J., Zou, Y., & Chen, X. (2015). A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: Ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration. Integrative Medicine Research, 4(3), 171–177.
  • Xhaxhiu, K., Korpa, A., Mele, A., & Kota, T. (2013). Ultrasonic and soxhlet extraction characteristics of the orange peel from “Moro” Cultivars grown in Albania. Journal of Essential Oil Bearing Plants, 16(4), 421–428.
  • Xu, J.-K., Li, M.-F., & Sun, R.-C. (2015). Identifying the impact of ultrasound-assisted extraction on polysaccharides and natural antioxidants from Eucommia ulmoides Oliver. Process Biochemistry, 50(3), 473–481.
  • Xu, Y., Cai, F., Yu, Z., Zhang, L., Li, X., Yang, Y., & Liu, G. (2016). Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chemistry, 194, 650–658.
  • Xue, D., & Farid, M. M. (2015). Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innovative Food Science & Emerging Technologies, 29, 178–186.
  • Yang, Y.-C., & Wei, M.-C. (2015). Kinetic and characterization studies for three bioactive compounds extracted from Rabdosia rubescens using ultrasound. Food and Bioproducts Processing, 94, 101–113.
  • Yen, H.-W., Yang, S.-C., Chen, C.-H., & Chang, J. S. (2015). Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource Technology, 184, 291–296.
  • Zaghdoudi, K., Framboisier, X., Frochot, C., Vanderesse, R., Barth, D., Kalthoum-Cherif, J., … Guiavarc’h, Y. (2016). Response surface methodology applied to Supercritical Fluid Extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.). Food Chemistry, 208, 209–219.
  • Zanqui, A. B., de Morais, D. R., da Silva, C. M., Santos, J. M., Gomes, S. T. M., Visentainer, J. V., … Matsushita, M. (2015). Subcritical extraction of flaxseed oil with n-propane: Composition and purity. Food Chemistry, 188, 452–458.