1,126
Views
5
CrossRef citations to date
0
Altmetric
Articles

The addition of hydrolyzed whey protein fractions to raw pork patties with subsequent chilled storage and its effect on oxidation and gel properties

Adición de fracciones de proteína de suero hidrolizadas a medallones de carne de puerco crudos, almacenados luego en frío, y sus efectos en la oxidación y las propiedades de gel

, , , &
Pages 553-560 | Received 04 Oct 2017, Accepted 27 Dec 2017, Published online: 14 Mar 2018

References

  • And, L. L. W., & Xiong, Y. L. (2005). Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. Journal of Agricultural & Food Chemistry, 53(23), 9186–9192. doi:10.1021/jf051213g
  • Botsoglou, E., Govaris, A., Ambrosiadis, I., Fletouris, D., & Botsoglou, N. (2014). Effect of olive leaf (olea europea, l.) extracts on protein and lipid oxidation of long-term frozen n −3 fatty acids-enriched pork patties. Meat Science, 98(2), 150–157. doi:10.1016/j.meatsci.2014.05.015
  • Choi, Y. M., & Kim, B. C. (2009). Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science, 122(2–3), 105–118. doi:10.1016/j.livsci.2008.08.015
  • Decker, E. A., Xiong, Y. L., Calvert, J. T., Crum, A. D., & Blanchard, S. P. (1993). Chemical, physical, and functional properties of oxidized turkey white muscle myofibrillar proteins. Journal of Agricultural & Food Chemistry, 41(2), 186–189. doi:10.1021/jf00026a007
  • Ersch, C., Meinders, M. B. J., Bouwman, W. G., Nieuwland, M., Linden, E. V. D., Venema, P., Martin A. H. (2016). Microstructure and rheology of globular protein gels in the presence of gelatin. Food Hydrocolloids, 55, 34–46. doi:10.1016/j.foodhyd.2015.09.030
  • Farvin, K. H. S., Andersen, L. L., Otte, J., Nielsen, H. H., Jessen, F., & Jacobsen, C. (2016). Antioxidant activity of cod (gadus morhua) protein hydrolysates: Fractionation and characterization of peptide fractions. Food Chemistry, 204, 409–419. doi:10.1016/j.foodchem.2016.02.145
  • Hwang, H. S., & Winklermoser, J. K. (2017). Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols. Food Chemistry, 221, 1168–1177. doi:10.1016/j.foodchem.2016.11.042
  • Intarasirisawat, R., Benjakul, S., Visessanguan, W., & Wu, J. (2014). Effects of skipjack roe protein hydrolysate on properties and oxidative stability of fish emulsion sausage. LWT - Food Science and Technology, 58(1), 280–286. doi:10.1016/j.lwt.2014.02.036
  • Jia, N., Kong, B., Liu, Q., Diao, X., & Xia, X. (2012). Antioxidant activity of black currant (ribes nigrum, l.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Science, 91(4), 533–539. doi:10.1016/j.meatsci.2012.03.010
  • Jully, K. M. M., Toto, C. S., & Were, L. (2015). Antioxidant effect of spent, ground, and lyophilized brew from roasted coffee in frozen cooked pork patties. LWT - Food Science and Technology, 66, 244–251. doi:10.1016/j.lwt.2015.10.046
  • Kong, B., Peng, X., Xiong, Y. L., & Zhao, X. (2012). Protection of lung fibroblast mrc-5 cells against hydrogen peroxide-induced oxidative damage by 0.1-2.8 kda antioxidative peptides isolated from whey protein hydrolysate. Food Chemistry, 135(2), 540–547. doi:10.1016/j.foodchem.2012.04.122
  • Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233(233), 346–357. doi:10.1016/S0076-6879(94)33040-9
  • Li, Y., Kong, B., Xia, X., Liu, Q., & Diao, X. (2013). Structural changes of the myofibrillar proteins in common carp (cyprinus carpio) muscle exposed to a hydroxyl radical-generating system. Process Biochemistry, 48(5–6), 863–870. doi:10.1016/j.procbio.2013.03.015
  • Lin, S., Liang, R., Xue, P., Zhang, S., Liu, Z., & Dong, X. (2017). Antioxidant activity improvement of identified pine nut peptides by pulsed electric field (pef) and the mechanism exploration. LWT - Food Science and Technology, 75, 366–372. doi:10.1016/j.lwt.2016.09.017
  • Liu, G., & Xiong, Y. L. (1996). Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins. Journal of Agricultural & Food Chemistry, 44(3), 779–784. doi:10.1021/jf9506242
  • Liu, Q., Kong, B., Li, G., Liu, N., & Xia, X. (2011). Hepatoprotective and antioxidant effects of porcine plasma protein hydrolysates on carbon tetrachloride-induced liver damage in rats. Food & Chemical Toxicology, 49(6), 1316–1321. doi:10.1016/j.fct.2011.03.013
  • Moudache, M., Nerín, C., Colon, M., & Zaidi, F. (2017). Antioxidant effect of an innovative active plastic film containing olive leaves extract on fresh pork meat and its evaluation by raman spectroscopy. Food Chemistry, 229, 98–103. doi:10.1016/j.foodchem.2017.02.023
  • Peng, X., Kong, B., Yu, H., & Diao, X. (2014). Protective effect of whey protein hydrolysates against oxidative stress in d-galactose-induced ageing rats. International Dairy Journal, 34(1), 80–85. doi:10.1016/j.idairyj.2013.08.004
  • Peng, X. Y., Xiong, Y. L. L., & Kong, B. H. (2009). Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chemistry, 113(1), 196–201. doi:10.1016/j.foodchem.2008.07.068
  • Petracci, M., Bianchi, M., Mudalal, S., & Cavani, C. (2013). Functional ingredients for poultry meat products. Trends in Food Science & Technology, 33(1), 27–39. doi:10.1016/j.tifs.2013.06.004
  • Ran, Y., Yan, B., Li, Z., Ding, Y., Shi, Y., & Le, G. (2016). Dityrosine administration induces novel object recognition deficits in young adulthood mice. Physiology & Behavior, 164(Pt A), 292–299. doi:10.1016/j.physbeh.2016.06.019
  • Rysman, T., Hecke, T. V., Poucke, C. V., Smet, S. D., & Royen, G. V. (2016). Protein oxidation and proteolysis during storage and in vitro, digestion of pork and beef patties. Food Chemistry, 209, 177–184. doi:10.1016/j.foodchem.2016.04.027
  • Shelly, H., Zhang, L., Li, J., Wang, H., & Zhou, K. (2009). Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chemistry, 117(3), 438–443. doi:10.1016/j.foodchem.2016.02.145
  • Turgut, S. S., Işıkçı, F., & Soyer, A. (2017). Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Science, 129, 111–119. doi:10.1016/j.meatsci.2017.02.019
  • Turgut, S. S., Soyer, A., & Işıkçı, F. (2016). Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage. Meat Science, 116, 126–132. doi:10.1016/j.meatsci.2016.02.011
  • Utrera, M., Morcuende, D., & Estévez, M. (2014). Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties. Meat Science, 96(3), 1250–1257. doi:10.1016/j.meatsci.2013.10.032
  • Wang, C., Wang, B., & Li, B. (2016). Bioavailability of peptides from casein hydrolysate in vitro: Amino acid compositions of peptides affect the antioxidant efficacy and resistance to intestinal peptidases. Food Research International, 81, 188–196. doi:10.1016/j.foodres.2015.12.013
  • Wang, L. L., & Xiong, Y. L. (2008). Inhibition of oxidant-induced biochemical changes of pork myofibrillar protein by hydrolyzed potato protein. Journal of Food Science, 73(6), 482–487. doi:10.1111/j.1750-3841.2008.00802.x
  • Wattanasiritham, L., Theerakulkait, C., Wickramasekara, S., Maier, C. S., & Stevens, J. F. (2016). Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry, 192, 156–162. doi:10.1016/j.foodchem.2015.06.057
  • Wu, M., Xiong, Y. L., Chen, J., Tang, X., & Zhou, G. (2010). Rheological and microstructural properties of porcine myofibrillar protein-lipid emulsion composite gels. Journal of Food Science, 74(4), E207–E217. doi:10.1111/j.1750-3841.2009.01140.x
  • Xia, X., Kong, B., Liu, Q., & Liu, J. (2009). Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles. Meat Science, 83(2), 239–245. doi:10.1016/j.meatsci.2009.05.003
  • Xiong, Y. L., Park, D., & Ooizumi, T. (2009). Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments. Journal of Agricultural & Food Chemistry, 57(1), 153–159. doi:10.1021/jf8024453
  • Xiong, Z., Sun, D. W., Pu, H., Xie, A., Han, Z., & Luo, M. (2015). Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chemistry, 179(1), 175–181. doi:10.1016/j.foodchem.2015.01.116
  • Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111–118. doi:10.1016/j.foodchem.2015.04.129
  • Zhao, J., Lv, W., Wang, J., Li, J., Liu, X., & Zhu, J. (2013). Effects of tea polyphenols on the post-mortem integrity of large yellow croaker (pseudosciaena crocea) fillet proteins. Food Chemistry, 141(3), 2666–2674. doi:10.1016/j.foodchem.2013.04.126