1,926
Views
9
CrossRef citations to date
0
Altmetric
Article

Production of flour film from waste flour during noodle production and its application for preservation of fresh strawberries

Producción de película de harina a partir de harina de desperdicio obtenida durante la elaboración de fideos y su aplicación en la preservación de fresas frescas

&
Pages 525-536 | Received 27 Sep 2017, Accepted 03 Jan 2018, Published online: 13 Mar 2018

References

  • Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch films properties. Journal of Food Engineering, 78, 941–946. doi:10.1016/j.jfoodeng.2005.12.007
  • AOAC. (2000). Official methods of analysis (17th ed.). Gaithersburg, MD: Association of Official Analytical Chemists.
  • ASTM. (1995a). Standard test method for tensile properties of thin plastic sheeting. ASTM D882-80a. In Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials.
  • Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical propertiesof starch–Clay nanocomposite films. Carbohydrate Polymers, 110, 26–31. doi:10.1016/j.carbpol.2014.03.092
  • Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–Chitosan blend biodegradable film. LWT - Food Science and Technology, 41, 1633–1641. doi:10.1016/j.lwt.2007.10.014
  • Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food and Bioprocess Technology, 5, 3181–3192. doi:10.1007/s11947-011-0663-y
  • Chiumarelli, M., & Hubinger, M. D. (2012). Stability, solubility, mechanical and barrier properties of cassava starch – Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28, 59–67. doi:10.1016/j.foodhyd.2011.12.006
  • Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava starch coating and citric acid to preserve quality parameters of fresh-cut “Tommy Atkins” mango. Journal of Food Science, 75, E297–E304. doi:10.1111/j.1750-3841.2010.01636.x
  • Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., de Oliveira Rios, A., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198–205. doi:10.1016/j.carbpol.2015.05.040
  • Fakhoury, F. M., Martelli, S. M., Bertan, L. C., Yamashita, F., Mei, L. H. I., & Queiroz, F. P. C. (2012). Edible films made from blends of manioc starch and gelatin – Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT - Food Science and Technology, 49, 149–154. doi:10.1016/j.lwt.2012.04.017
  • Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of glycerol on physical and mechanical properties of wheat starch edible films. Journal of Texture Studies, 44, 176–186. doi:10.1111/jtxs.12007
  • García, L. C., Pereira, L. M., Sarantópoulos, C. I. G. D. L., & Hubinger, M. D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food and Bioprocess Technology, 3, 834–842. doi:10.1007/s11947-009-0313-9
  • Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids, 45, 211–217. doi:10.1016/j.foodhyd.2014.11.017
  • Huang, R. M., Chang, W. H., Chang, Y. H., & Lii, C. Y. (1994). Phase transitions of rice starch and flour gels. Cereal Chemistry, 71, 202–207.
  • Juliano, B. O. (1971). A simplified assay for milled-rice amylose. Cereal Science Today, 16, 334–340.
  • Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: A review. Food Technology, 40(12), 47–59.
  • Klangmuang, P., & Sothornvit, R. (2016). Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT - Food Science and Technology, 65, 222–227. doi:10.1016/j.lwt.2015.08.003
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2011). Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. Journal of Food Science, 76, R90–R102. doi:10.1111/j.1750-3841.2011.02102.x
  • Laohakunjit, N., & Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch/Starke, 56, 348–356. doi:10.1002/star.200300249
  • Mathew, A. P., & Dufresne, A. (2002). Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties. Biomacromolecules, 3(5), 1101–1108. doi:10.1021/bm020065p
  • McHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841–845. doi:10.1021/jf00040a001
  • Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2017). Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 157, 1094–1104. doi:10.1016/j.carbpol.2016.10.073
  • Mooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418, 219–232. doi:10.1042/BJ20081769
  • Mopoung, S., Sirikulkajorn, A., Dummun, D., & Luethanom, P. (2012). Nanocarbonfibril in rice flour charcoal. International Journal of Physical Sciences, 7, 214–221. doi:10.5897/IJPS11.1615
  • Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72, 82–87. doi:10.1016/j.carbpol.2007.07.026
  • Nunes, M. C. N., Brecht, J. K., Morais, A. M., & Sargent, S. A. (2006). Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. Journal of the Science of Food and Agriculture, 86, 180–190. doi:10.1002/jsfa.2314
  • Pan, H., Jiang, B., Chen, J., & Jin, Z. (2014). Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry, 151, 1–6. doi:10.1016/j.foodchem.2013.11.075
  • Parra, D. F., Tadini, C. C., Ponce, P., & Lugão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58, 475–481. doi:10.1016/j.carbpol.2004.08.021
  • Peretto, G., Du, W. X., Avena-Bustillos, R. J., Sarreal, S. B. L., Hua, S. S. T., Sambo, P., & McHugh, T. H. (2014). Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biology and Technology, 89, 11–18. doi:10.1016/j.postharvbio.2013.11.003
  • Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., … Thompson, R. C. (2013). Policy: Classify plastic waste as hazardous. Nature, 494, 169–171. doi:10.1038/494169a
  • Rodríguez, M., Osés, J., Ziani, K., & Mate, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39, 840–846. doi:10.1016/j.foodres.2006.04.002
  • Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7, 1106–1124. doi:10.3390/polym7061106
  • Seligra, P. G., Jaramillo, C. M., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch–Glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66–74. doi:10.1016/j.carbpol.2015.11.041
  • Shin, Y., Ryu, J. A., Liu, R. H., Nock, J. F., & Watkins, C. B. (2008). Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biology and Technology, 49, 201–209. doi:10.1016/j.postharvbio.2008.02.008
  • Shit, S. C., & Shah, P. M. (2014). Edible polymers: Challenges and opportunities. Journal of Polymers. doi:10.1155/2014/427259
  • Tapia-Blácido, D. R., Sobral, P. J. A., & Menegalli, F. C. (2010). Potential of Amaranthus cruentus BRS Alegria in the production of flour, starch and protein concentrate: Chemical, thermal and rheological characterization. Journal of the Science of Food and Agriculture., 90(7), 1185–1193. doi:10.1002/jsfa.3946
  • Taqi, A., Askar, K. A., Nagy, K., Mutihac, L., & Stamatin, I. (2011). Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. African Journal of Biotechnology, 10, 12963–12972. doi:10.5897/AJB11.1971
  • Thai Industrial Standards Institute (TISI), Ministry of Industry. (1990). Industrial products standards 959–1990 of TIS rice noodles. Bangkok, Thailand: Author.
  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48, 496–511. doi:10.1080/10408390701537344
  • Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–Starch composite film: Preparation and characterization. Industrial Crops and Products, 21, 185–192. doi:10.1016/j.indcrop.2004.03.002
  • Zhao, R., Torley, P., & Halley, P. J. (2008). Emerging biodegradable materials: Starch- and protein-based bio-nanocomposites. Journal of Materials Science, 43, 3058–3071. doi:10.1007/s10853-007-2434-8