913
Views
2
CrossRef citations to date
0
Altmetric
Articles

Development of a new strategy based on the application of phytoregulators to induce phenolic acids in olive fruits

Desarrollo de una nueva estrategia basada en la aplicación de fitorreguladores para inducir ácidos fenólicos en aceitunas

, &
Pages 692-697 | Received 04 Jan 2018, Accepted 09 Apr 2018, Published online: 18 Jun 2018

References

  • Arslan, D., & Özcan, M. M. (2011). Phenolic profile and antioxidant activity of olive fruits of the Turkish variety “Sarıulak” from different locations. Grasas y aceites, 62, 453–461.
  • Benito, M., Oria, R., & Sánchez-Gimeno, A. C. (2009). Influencia del retraso en el procesado de las aceitunas tras la recolección, en parámetros físico-químicos y nutricionales del aceite de oliva de la variedad. Racimilla. Grasas y aceites, 60, 382–387.
  • Cantín, C. M., Fidelibus, M. W., & Crisosto, C. H. (2007). Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of “Crimson seedless” grapes. Postharvest Biology & Technology, 46, 237–241.
  • Coni, E., Di Benedetto, R., Di Pasquale, M., Masella, R., Modesti, D., & Mattei, R. (2000). Protective effect of oleuropein, an olive oil biophenol, on low-density lipoprotein oxidizability in rabbits. Lipids, 35, 45–54.
  • Czapski, J., Horbowicz, M., & Saniewski, M. (1992). The effect of methyl jasmonate on free fatty acids content in ripening tomato fruits. Biology Plantarum, 34, 71–76.
  • Ferreira, I. C. F. R., Barros, L., & Abreu, R. M. V. (2009). Antioxidant in wild mushrooms. Current Medicinal Chemistry, 16, 1543–1560.
  • Flores, G., Blanch, G. P., & Ruiz del Castillo, M. L. (2015). Postharvest treatment with (-)- and (+)-methyl jasmonate stimulates anthocyanin accumulation in grapes. LWT-Food Science & Technology, 62, 807–812.
  • Flores, G., Blanch, G. P., & Ruiz del Castillo, M. L. (2016). Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage. Journal of the Science and Food Agriculture, 97, 2767–2772.
  • Flores, G., de la Peña Moreno, F., Blanch, G. P., & Ruiz del Castillo, M. L. (2014). Phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity by a new in vitro assay method in berry fruits. Food Chemistry, 153, 130–133.
  • Flores, G., Pérez, C., Gil, C., Blanch, G. P., & Ruiz del Castillo, M. L. (2013). Methyl jasmonate treatment of strawberry fruits enhances antioxidant activity and the inhibition of nitrite production in LPS-stimulated Raw 264.7 cells. Journal of Functional Food, 5, 1803–1809.
  • Flores, G., & Ruiz del Castillo, M. L. (2015). Variations in ellagic acid, quercetin and myricetin in berry cultivars after pre-harvest methyl jasmonate treatments. Journal of Food Compositional Analalysis, 39, 55–61.
  • Flores, G., & Ruiz del Castillo, M. L. (2016). Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application. Food Chemistry, 194, 1260–1265.
  • Gramadzka, J., & Wardencki, W. (2011). Trends in edible vegetable oils analysis. Part A. Determination of different components of edible oils – A review. Polish Journal of Food and Nutrition Sciences, 61, 33–43.
  • Gumerova, E. A., Akulov, A. N., & Rumyantseva, N. I. (2015). Effect of methyl jasmonate on growth characteristics and accumulation of phenolic compounds in suspension culture and tartary buckwheat. Russian Journal of Plant Physiology, 62, 195–203.
  • Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology &Technology, 51, 242–249.
  • Horbowicz, M., Chrzanowski, G., Koczkodaj, D., & Mitrus, J. (2011). The effect of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Societatis Botanicorum Poloniae, 1, 5–9.
  • Huang, Y., Cai, S., Ye, L., Hu, H., Li, C., & Zhang, C. (2016). The effects of GA and ABA treatments on metabolic profile of germinating barley. Food Chemistry, 192, 928–933.
  • Inarejos-García, A. M., Gómez-Rico, A., Desamparados Salvador, M., & Fregapane, G. (2010). Effect of preprocessing olive storage conditions on virgin olive oil quality and composition. Journal of Agricultural and Food Chemistry, 58, 4858–4865.
  • Kalua, C. M., Bedgood, D. R., Jr., Bishop, A. G., & Prenzler, P. D. (2006). Discrimination of storage conditions and freshness in virgin olive oil. Journal of Agricultural and Food Chemistry, 54, 7144–7151.
  • Kim, H.-J., Fonseca, J. M., Choi, J.-H., & Kubota, C. (2007). Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). Journal of Agricultural and Food Chemistry, 55, 10366–10372.
  • Li, L., Dong, Y., Ren, H., Xue, Y., Meng, H., & Li, M. (2017). Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiate) sprouts. Food Science & Technology, 37. doi:10.1590/1678-457x.15716
  • Liang, Z., Ma, Y., Xu, T., Cui, B., Liu, Y., Guo, Z., & Yang, D. (2013). Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. Plos One, 8, e72806.
  • Nergiz, C., & Unal, K. (1991). Effect of method of extraction on the total polyphenol, 1,2-diphenol content and stability of virgin olive oil. Journal of the Science of Food and Agriculture, 56, 79–84.
  • Peppi, M. C., Fidelibus, M. W., & Dokoozlian, N. (2006). Abscisic acid application timing and concentration affect firmness, pigmentacion, and colour of flame seedless grapes. HortScience, 41, 1440–1445.
  • Reboredo-Rodríguez, P., Figueiredo-González, M., González-Barreiro, C., Simal-Gándara, J., Desamparados Salvador, M., Cancho-Grande, B., & Fregapane, G. (2017). State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. International Journal of Molecular Sciences, 18, 668–696.
  • Romero, C., García, P., Brenes, M., García, A., & Garrido, A. (2002). Phenolic compounds in natural black Spanish olive varieties. European Food Research & Technology, 215, 489–496.
  • Ruiz del Castillo, M. L., Flores, G., & Blanch, G. P. (2010). Exogenous methyl jasmonate diminishes the formation of lipid-derived compounds in boiled potato (Solanum tuberosum L.). Journal of the Science and Food Agriculture, 90, 2263–2267.
  • Ryan, D., & Robards, K. (1998). Phenolic compounds in olives. Analyst, 123, 31R–44R.
  • Sandhu, A. K., Gray, D. J., Lu, J., & Gu, L. (2011). Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chemistry, 126, 982–988.
  • Shin, Y., Ryu, J. A., Liu, R. H., Nock, J. F., Polar-Cabrera, K., & Watkins, C. B. (2008). Fruit quality, antioxidant contents and activity, and antiproliferative activity of strawberry fruit stored in elevated CO2 atmosphere. Journal of Food Science, 73, 339–344.
  • Smith, R. C., Reeves, J. C., Dage, R. C., & Schnettler, R. A. (1987). Antioxidant properties of 2-imidazolones and 2-imidazolthiones. Biochemical Pharmacology, 36, 1457–1460.
  • Vinha, A. F., Ferreres, F., Silva, B. M., Valentao, P., Gongalves, A., Pereira, J. A., … Andrade, P. B. (2005). Phenolic profiles of Portuguese olive fruits (Olea europea L.): Influence of cultivar and geographical origin. Food Chemistry, 89, 561–568.
  • Visioli, F., Poli, A., & Galli, C. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews, 22, 65–75.
  • Xi, Z.-M., Meng, J.-F., Huo, -S.-S., Luan, L.-Y., Ma, L.-N., & Zhang, Z.-W. (2013). Exogenously applied abscisic acid to Yan73 (V. vinifera) grapes enhances phenolic content and antioxidant capacity of its wine. Italian Journal of Food Science & Nutrition, 64, 444–451.
  • Ying, X., Peng, D., Shouhong, G., & Lei, Z. (2009). Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiology Plantarum, 137, 1–9.