1,286
Views
16
CrossRef citations to date
0
Altmetric
Articles

Alkaline pH-dependent thermal aggregation of chicken breast myosin: formation of soluble aggregates

Agregación térmica alcalina dependiente del pH de miosina de pechuga de pollo: formación de agregados solubles

, , , , , & show all
Pages 765-775 | Received 26 Jan 2018, Accepted 20 Apr 2018, Published online: 01 Aug 2018

References

  • Alizadeh-Pasdar, N., & Li-Chan, E. C. Y. (2000). Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. Journal Of Agricultural And Food Chemistry, 48(2), 328–334. Retrieved from <Go to ISI>://WOS:000085510000034.
  • Anema, S. G., & Li, Y. M. (2003). Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk. Journal Of Agricultural And Food Chemistry, 51(6), 1640–1646. Retrieved from <Go to ISI>://WOS:000181401400024.
  • Chen, X., Tume, R. K., Xu, X. L., & Zhou, G. H. (2017). Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition, 57(15), 3260–3280. Retrieved from <Go to ISI>://WOS:000401989100009.
  • Chen, X., Zou, Y. F., Han, M. Y., Pan, L. H., Xing, T., Xu, X. L., & Zhou, G. H. (2016). Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring. Food Chemistry, 196, 42–49. Retrieved from <Go to ISI>://WOS:000366223800006.
  • Cortes-Ruiz, J. A., Pacheco-Aguilar, R., Ramirez-Suarez, J. C., Lugo-Sanchez, M. E., Garcia-Orozco, K. D., Sotelo-Mundo, R. R., & Pena-Ramos, A. (2016). . Conformational Changes in Proteins Recovered from Jumbo Squid (Dosidicus Gigas) Muscle through pH Shift Washing Treatments. Food Chemistry,196, 769–775. 10.1016/j.foodchem.2015.09.054 . Retrieved from <Go to ISI>://WOS:000366223800096.
  • Creamer, L., Zoerb, H., Olson, N., & Richardson, T. (1982). Surface hydrophobicity of αs1-I, αs1-casein A and B and its implications in cheese structure. Journal of Dairy Science, 65(6), 902–906.
  • Davies, J. R., Bardsley, R. G., Ledward, D. A., & Poulter, R. G. (1988). Myosin Thermal-Stability In Fish Muscle. Journal of the Science of Food and Agriculture, 45(1), 61–68. Retrieved from <Go to ISI>://WOS:A1988P665400007.
  • Deng, Y., Luo, Y. L., Wang, Y. G., & Zhao, Y. Y. (2015). Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chemistry, 171, 168–176. Retrieved from <Go to ISI>://WOS:000343952300024.
  • Dong, X. P., Ma, L. L., Zheng, J., Wang, J. T., Wu, Q., Song, S., & Zhou, D. Y. (2014). Effect of pH on the physicochemical and heat-induced gel properties of scallop Patinopecten yessoensis actomyosin. Fisheries Science, 80(5), 1073–1082. Retrieved from <Go to ISI>://WOS:000342220700024.
  • Ferrone, F. (1999). Analysis of protein aggregation kinetics. Methods Enzymol, 309(1), 256–274. Retrieved from <Go to ISI>://WOS:000084721400017.
  • Frederiksen, A. M., Lund, M. N., Andersen, M. L., & Skibsted, L. H. (2008). Oxidation of porcine myosin by hypervalent myoglobin: The role of thiol groups. Journal Of Agricultural And Food Chemistry, 56(9), 3297–3304. Retrieved from <Go to ISI>://WOS:000255655600060.
  • Giroux, H. J., Houde, J., & Britten, M. (2010). Preparation of nanoparticles from denatured whey protein by pH-cycling treatment. Food Hydrocolloids, 24(4), 341–346. Retrieved from <Go to ISI>://WOS:000274082200012.
  • Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal Biol Chemical, 177(2), 751–766.
  • Guo, X., Peng, Z., Zhang, Y., Liu, B., & Cui, Y. (2015). The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine. Food Chemistry, 170, 212–217.
  • Hayakawa, T., Ito, T., Wakamatsu, J., Nishimura, T., & Hattori, A. (2009). Myosin is solubilized in a neutral and low ionic strength solution containing L-histidine. Meat Science, 82(2), 151–154. Retrieved from <Go to ISI>://WOS:000265398700002.
  • Howell, B. K., Matthews, A. D., & Donnelly, A. P. (1991). Thermal-Stability Of Fish Myofibrils - a Differential Scanning Calorimetric Study. International Journal Of Food Science And Technology, 26(3), 283–295. Retrieved from <Go to ISI>://WOS:A1991FW11300005.
  • Kato, S., & Konno, K. (1993). Isolation Of Carp Myosin Rod And Its Structural Stability. Nippon Suisan Gakkaishi, 59(3), 539–544. Retrieved from <Go to ISI>://WOS:A1993KX82400021.
  • Kristinsson, H. G., & Hultin, H. O. (2003a). Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal Of Agricultural And Food Chemistry, 51(24), 7187–7196. Retrieved from <Go to ISI>://WOS:000186580100046.
  • Kristinsson, H. G., & Hultin, H. O. (2003b). Effect of low and high pH treatment on the functional properties of cod muscle proteins. Journal Of Agricultural And Food Chemistry, 51(17), 5103–5110. Retrieved from <Go to ISI>://WOS:000184635500043.
  • Mcswiney, M., Singh, H., & Campanella, O. H. (1994). Thermal Aggregation And Gelation Of Bovine Beta-Lactoglobulin. Food Hydrocolloids, 8(5), 441–453. Retrieved from <Go to ISI>://WOS:A1994PP73400004.
  • Militello, V., Casarino, C., Emanuele, A., Giostra, A., Pullara, F., & Leone, M. (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry, 107(2), 175–187. Retrieved from <Go to ISI>://WOS:000189048000007.
  • Monahan, F. J., German, J. B., & Kinsella, J. E. (1995). Effect of Ph and temperature on protein unfolding and thiol-disulfide interchange reactions during heat-induced gelation of whey proteins. Journal Of Agricultural And Food Chemistry, 43(1), 46–52. Retrieved from <Go to ISI>://WOS:A1995QD19900010.
  • Nakai, S., & Li-Chan, E. (1988). Hydrophobicity-functionality relationship of food proteins. Hydrophobic interactions in food systems(pp. 43–61). Boca Raton: CRC Press.
  • Nakasawa, T., Takahashi, M., Matsuzawa, F., Aikawa, S., Togashi, Y., Saitoh, T., & Yazawa, M. (2005). Critical regions for assembly of vertebrate nonmuscle myosin II. Biochemistry, 44(1), 174–183. Retrieved from <Go to ISI>://WOS:000226214600020.
  • Offer, G., & Trinick, J. (1983). On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science, 8(4), 245–281.
  • Pan, K., & Zhong, Q. X. (2016). Organic Nanoparticles in Foods: Fabrication, characterization, and utilization. Annual Review Of Food Science And Technology, 7(7), 245–266. Retrieved from <Go to ISI>://WOS:000371430700011.
  • Pereira, P. M. D. C., & Vicente, A. F. D. B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science, 93(3), 586–592. Retrieved from <Go to ISI>://WOS:000314735100032.
  • Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat Science, 86(1), 151–165.
  • Puppo, M. C., & Anon, M. C. (1998). Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. Journal Of Agricultural And Food Chemistry, 46(9), 3583–3589.
  • Ryan, K. N., & Foegeding, E. A. (2015). Formation of soluble whey protein aggregates and their stability in beverages. Food Hydrocolloids, 43, 265–274. Retrieved from <Go to ISI>://WOS:000345683500033.
  • Ryan, K. N., Zhong, Q., & Foegeding, E. A. (2013). Use of whey protein soluble aggregates for thermal stability—A hypothesis paper. Journal Of Food Science, 78(8). 10.1111/1750-3841.12027
  • Shen, X., Fang, T. Q., Gao, F., & Guo, M. R. (2017). Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocolloids, 63, 668–676. Retrieved from <Go to ISI>://WOS:000389091600072.
  • Shimada, M., Takai, E., Ejima, D., Arakawa, T., & Shiraki, K. (2015). Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution. International Journal Of Biological Macromolecules, 73, 17–22. Retrieved from <Go to ISI>://WOS:000349194300003.
  • Tadpitchayangkoon, P., Park, J. W., & Yongsawatdigul, J. (2010). Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chemistry, 121(4), 1046–1052. Retrieved from <Go to ISI>://WOS:000277107100019.
  • Tazawa, T., Kato, S., Katoh, T., & Konno, K. (2002). Role of neck region in the thermal aggregation of myosin. Journal Of Agricultural And Food Chemistry, 50(1), 196–202. Retrieved from <Go to ISI>://WOS:000173078600035.
  • Teng, Z., Luo, Y. C., & Wang, Q. (2012). Nanoparticles synthesized from soy protein: Preparation, characterization, and application for nutraceutical encapsulation. Journal Of Agricultural And Food Chemistry, 60(10), 2712–2720. Retrieved from <Go to ISI>://WOS:000301407000038.
  • Vetri, V., Librizzi, F., Leone, M., & Militello, V. (2007). Thermal aggregation of bovine serum albumin at different pH: Comparison with human serum albumin. European Biophysics Journal with Biophysics Letters, 36(7), 717–725. Retrieved from <Go to ISI>://WOS:000248833500006.
  • Xiong, Y. (1997). Structure-function relationships of muscle protein. In S. Damodaran & A. Paraf (Eds.), Food protein and their application (pp. 341–391). New York: Marcel Dekker, Inc.
  • Yamamoto, K. Retrieved from<Go to ISI>://WOS:A1990EL63800002. (1990). Electron-microscopy of thermal aggregation of Myosin. Journal Of Biochemistry, 108(6), 896–898.
  • Zhang, Z. Y., Yang, Y. L., Zhou, P., Zhang, X., & Wang, J. Y. (2017). Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217, 678–686. Retrieved from <Go to ISI>://WOS:000384851800086.
  • Zhao, X., Xing, T., Chen, X., Han, M.-Y., Xu, X.-L., & Zhou, G.-H. (2017). Yield, thermal denaturation, and microstructure of proteins isolated from pale, soft, exudative chicken breast meat by using isoelectric solubilization/precipitation. Process Biochemistry.