2,999
Views
8
CrossRef citations to date
0
Altmetric
Articles

Phytochemical characterization of sesame bran: an unexploited by-product rich in bioactive compounds

Caracterización fitoquímica de salvado de ajonjolí: un sub-producto desaprovechado rico en compuestos bioactivos

, , , , & ORCID Icon
Pages 814-821 | Received 07 Feb 2018, Accepted 19 May 2018, Published online: 03 Aug 2018

References

  • Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182–6187.
  • Alyemeni, M. N., Basahy, A. Y., & Sher, H. (2011). Physico-chemical analysis and mineral composition of some sesame seeds (Sesamum indicum L.) grown in the Gizan area of Saudi Arabia. Journal of Medicinal Plants Research, 5(2), 270–274.
  • Becerra-Moreno, A., Benavides, J. A., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2012). Plants as biofactories: Glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. Journal of Agricultural and Food Chemistry, 60(45), 11378–11386.
  • Bertin, C., Rouau, X., & Thibault, J. F. (1988). Structure and properties of sugar beet fibres. Journal of the Science of Food and Agriculture, 44, 15–29.
  • Bhatnagar, A. S., Hemavathy, J., & Krishna, A. G. (2015). Development of a rapid method for determination of lignans content in sesame oil. Journal of Food Science and Technology, 52(1), 521–527.
  • Boz, H. (2015). Ferulic acid in cereals: A review. Czech Journal of Food Science, 33(1), 1–7.
  • Budowski, P., O’connor, R. T., & Field, E. T. (1951). Sesame oil. VI. Determination of sesamin. Journal of the American Oil Chemists’ Society, 28(2), 51–54.
  • Cámara, F., Amaro, M., Barberá, R., & Clemente, G. (2005). Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chemistry, 92(3), 481–489.
  • Chang, L. W., Yen, W. J., Huang, S. C., & Duh, P. D. (2002). Antioxidant activity of sesame coat. Food Chemistry, 78(3), 347–354.
  • D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: Status and controversies. International Journal of Molecular Sciences, 11(4), 1321–1342.
  • Dar, A. A., & Arumugam, N. (2013). Lignans of sesame: Purification methods, biological activities and biosynthesis – A review. Bioorganic Chemistry, 50, 1–10.
  • De La Parra, C., Serna-Saldivar, S. O., & Liu, R. H. (2007). Effect of processing on the phyochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. Journal of Agriculture and Food Chemistry, 55(10), 4177–4183.
  • Dikeman, C. L., Murphy, M. R., & Fahey, G. C. (2006). Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. Journal of Nutrition, 136, 913–919.
  • Dueñas, M., Hernández, T., & Estrella, I. (2002). Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). European Food Research and Technology, 215, 478–483.
  • Elleuch, M., Bedigian, D., Maazoun, B., Besbes, S., Blecker, C., & Attia, H. (2014). Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier. Food Chemistry, 145, 765–771.
  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fiber and fiber-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421.
  • Elleuch, M., Besbes, S., Roiseux, O., Blecker, C., & Attia, H. (2007). Quality characteristics of sesame seeds and by-products. Food Chemistry, 103(2), 641–650.
  • Gupta, M., Abu‐Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing and applications of its by‐products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.
  • Gutiérrez-Uribe, J. A., Rojas-García, C., García-Lara, S., & Serna-Saldívar, S. O. (2010). Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. Journal of Cereal Science, 52(3), 410–416.
  • Hassan, M. A. (2012). Studies on Egyptian sesame seeds (Sesamum indicum L.) and its products 1-physicochemical analysis and phenolic acids of roasted Egyptian sesame seeds (Sesamum indicum L.). World Journal of Dairy & Food Sciences, 7(2), 195–201.
  • Hosseinian, F. S., & Mazza, G. (2009). Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and lignans. Journal of Functional Foods, 1(1), 57–64.
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444.
  • Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2009). Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. Journal of Food Science, 74(9), R107–R113.
  • Jung, M. J., Heo, S. I., & Wang, M. H. (2008). Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chemistry, 108(2), 482–487.
  • Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962.
  • Kamal-Eldin, A., Lærke, H. N., Knudsen, K. E. B., Lampi, A. M., Piironen, V., Adlercreutz, H., … Åman, P. (2009). Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food & Nutrition Research, 53(1), 1912.
  • Kang, M. H., Naito, M., Sakai, K., Uchida, K., & Osawa, T. (1999). Mode of action of sesame lignans in protecting lowdensity lipoprotein against oxidative damage in vitro. Life Sciences, 66(2), 161–171.
  • Kumar, G. S., & Krishna, A. G. (2015). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. Journal of Food Science and Technology, 52(2), 1145–1151.
  • Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86–93.
  • Lazarou, D., Grougnet, R., & Papadopoulos, A. (2007). Antimutagenic properties of a polyphenol-enriched extract derived from sesame-seed perisperm. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 634(1), 163–171.
  • Mohamed, H. M. A., & Awatif, I. I. (1998). The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chemistry, 62(3), 269–276.
  • Nandi, I., & Ghosh, M. (2015). Studies on functional and antioxidant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioactive Carbohydrates and Dietary Fibre, 5(2), 129–136.
  • Ndolo, V. U., & Beta, T. (2014). Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. Cereal Chemistry, 91(5), 522–530.
  • Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1554), 3065–3081.
  • Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58–69.
  • Sahuquillo, A., Barberá, R., & Farré, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung, 47(6), 438–441.
  • Sánchez-Rangel, J. C., Benavides, J. A., Heredia, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990–5999.
  • Schmidt, Š., & Pokorný, J. (2005). Potential application of oilseeds as source of antioxidants for food lipids – a review. Czech Journal of Food Sciences., 23(3), 93–102.
  • Schmidt, Š., Pokorný, J., Vajdák, M., Sekretár, S., & Gordon, M. H. (2003). Oilseeds as a source of antioxidants. Bulletin Potravinárskeho Výskumu, 42, 133–149.
  • Shahidi, F., & Liyana-Pathirana, C. M. (2005). Antioxidant activity of sesame fractions. In F. Shahidi & C. T. Ho (Eds.), Phenolic compounds in foods and natural health products (Vol. 909, pp. 33–45). Washington, DC: American Chemical Society.
  • Shahidi, F., & Naczk, M. (2004). Phenolics in food and nutraceuticals. Boca Raton, FL: CRC Press.
  • Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: A novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6), 807–816.
  • Sukumar, D., Arimboor, R., & Arumughan, C. (2008). HPTLC fingerprinting and quantification of lignans as markers in sesame oil and its polyherbal formulations. Journal of Pharmaceutical and Biomedical Analysis, 47(4), 795–801.
  • USDA. (2017, December). Agricultural research service. Food Composition Databases. Retrieved from https://ndb.nal.usda.gov/ndb/
  • Yoshida, H., Shigezaki, J., Takagi, S., & Kajimoto, G. (1995). Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oils roasted in a microwave oven. Journal of the Science of Food and Agriculture, 68(4), 407–415.
  • Yoshida, H., & Takagi, S. (1997). Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. Journal of the Science of Food and Agriculture, 75(1), 19–26.
  • Zhou, K., & Yu, L. (2004). Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT-Food Science and Technology, 37(7), 717–721.
  • Zhou, L., Lin, X., Abbasi, A. M., & Zheng, B. (2016). Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. BioMed Research International, 8495630..
  • Zouari, R., Besbes, S., Ellouze-Chaabouni, S., & Ghribi-Aydi, D. (2016). Cookies from composite wheat–Sesame peels flours: Dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chemistry, 194, 758–769.