2,297
Views
11
CrossRef citations to date
0
Altmetric
Articles

Phenolic profiles, antioxidant and antimutagenic activities of Solanum lycopersicum var. cerasiforme accessions from Mexico

Perfiles de fenólicos, actividades antioxidante y antimutagénica de accesiones de Solanum lycopersicum var. cerasiforme de México

ORCID Icon, , , , , , & show all
Pages 715-722 | Received 21 Feb 2018, Accepted 18 May 2018, Published online: 20 Jun 2018

References

  • Adalid, A. M., Rosello, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, beta-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613–618.
  • Agarwal, S., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163(6), 739–744.
  • Apak, R., Özyürek, M., Güçlü, K., & Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (Electron transfer (ET)/HAT), and lipid peroxidation assays. Journal of Agricultural and Food Chemistry, 64(5), 1028–1045.
  • Barros, L., Duenas, M., Pinela, J., Carvalho, A. M., Buelga, C. S., & Ferreira, I. C. (2012). Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardens. Plant Foods for Human Nutrition, 67(3), 229–234.
  • Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Diez, M. J., … Canizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16, 257.
  • Boches, P., Peterschmidt, B., & Myers, J. R. (2011). Evaluation of a subset of the Solanum lycopersicum var. cerasiforme core collection for horticultural quality and fruit phenolic content. HortScience, 46(11), 1450–1455.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.
  • Carrillo-Rodríguez, J., & Chávez-Servia, J. (2010). Agromorphological characterization of tomato samples from Oaxaca. Revista Fitotecnia Mexicana, 33(4), 1–6.
  • Crisanto-Juárez, A. U., Vera-Guzmán, A. M., Chávez-Servia, J. L., & Carrillo-Rodríguez, J. C. (2010). Fruit quality of wild tomatoes (Lycopersicon esculentum var. Cerasiforme Dunal) from Oaxaca, México. Revista Fitotecnia Mexicana, 33, 7–13.
  • Gómez-Romero, M., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71(16), 1848–1864.
  • González De Mejía, E., Castaño-Tostado, E., & Loarca-Piña, G. (1999). Antimutagenic effects of natural phenolic compounds in beans. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 441(1), 1–9.
  • Hanson, P. M., Yang, R. Y., Wu, J., Chen, J. T., Ledesma, D., Tsou, S. C. S., & Lee, T. C. (2004). Variation for antioxidant activity and antioxidants in tomato. Journal of the American Society for Horticultural Science, 129(5), 704–711.
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444.
  • Juárez-López, P., Castro-Brindis, R., Colinas-León, T., Ramírez-Vallejo, T., Sandoval-Villa, M., Reed, D. W., … King, S. (2009). Evaluation of quality in fruits of seven native tomato (Lycopersicum esculentum var cerasiforme) genotypes. Revista Chapingo Serie Horticultura, 15, 5–9.
  • Kado, N. Y., Langley, D., & Eisenstadt, E. (1983). A simple modification of the Salmonella liquid-incubation assay. Increased sensitivity for detecting mutagens in human urine. Mutation Research, 121(1), 25–32.
  • Kaur, C., Walia, S., Nagal, S., Walia, S., Singh, J., Singh, B. B., & Sarika. (2013). Functional quality and antioxidant composition of selected tomato (Solanum lycopersicum L) cultivars grown in Northern India. LWT - Food Science and Technology, 50(1), 139–145.
  • Kevers, C., Falkowski, M., Tabart, J., Defraigne, J. O., Dommes, J., & Pincemail, J. (2007). Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry, 55(21), 8596–8603.
  • Li, H. Y., Deng, Z. Y., Wu, T., Liu, R. H., Loewen, S., & Tsao, R. (2012). Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chemistry, 130(4), 928–936.
  • Li, Y., Chen, M., Wang, S., Ning, J., Ding, X., & Chu, Z. (2015). AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell, Tissue and Organ Culture, 122, 309–319.
  • Luo, J., Butelli, E., Hill, L., Parr, A., Niggeweg, R., Bailey, P., … Martin, C. (2008). AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. The Plant Journal, 56(2), 316–326.
  • Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.
  • Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., De Groot, J., Van Beek, T. A., … De Vos, C. H. R. (2006). A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology, 141(4), 1205–1218.
  • Ninfali, P., Mea, G., Giorgini, S., Rocchi, M., & Bacchiocca, M. (2005). Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. British Journal of Nutrition, 93(2), 257–266.
  • Polívková, Z., Šmerák, P., Demová, H., & Houška, M. (2010). Antimutagenic effects of lycopene and tomato puree. Journal of Medicinal Food, 13(6), 1443–1450.
  • Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523.
  • Rauscher, R., Edenharder, R., & Platt, K. L. (1998). In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 413(2), 129–142.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applaying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237.
  • Ribas-Agustí, A., Cáceres, R., Gratacós-Cubarsí, M., Sárraga, C., & Castellari, M. (2012). A validated HPLC-DAD method for routine determination of ten phenolic compounds in tomato fruits. Food Analytical Methods, 5(5), 1137–1144.
  • Valdez-Morales, M., Espinosa-Alonso, L. G., Espinoza-Torres, L. C., Delgado-Vargas, F., & Medina-Godoy, S. (2014). Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agricultural and Food Chemistry, 62(23), 5281–5289.
  • Vallverdú-Queralt, A., Medina-Remón, A., Martínez-Huélamo, M., Jáuregui, O., Andres-Lacueva, C., & Lamuela-Raventos, R. M. (2011). Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. Journal of Agricultural and Food Chemistry, 59(8), 3994–4001.
  • Wall, M. E., Wani, M. C., Hughes, T. J., & Taylor, H. (1988). Plant antimutagenic agents, 1. General bioassay and isolation procedures. Journal of Natural Products, 51(5), 866–873.
  • Waterhouse, A. L. (2002). Determination of total phenolics. In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry (pp. I1.1.1–I1.1.8). New York, NY: Wiley.
  • Yamada, J., & Tomita, Y. (1996). Antimutagenic activity of caffeic acid and related compounds. Bioscience, Biotechnology and Biochemistry, 60(2), 328–329.
  • Yamaguchi, M. (1983). Solanaceous fruits: Tomato, eggplant, peppers, and others. In M. Yamaguchi (Ed.), World vegetables (pp. 291–311). Westport: AVI Publishing Company, Inc.