1,792
Views
12
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect

Síntesis, caracterización de nanopartículas de quitosano cargadas de catequina y conjugadas de folato y su efecto antiproliferativo

, , , &
Pages 868-876 | Received 01 Feb 2018, Accepted 14 Jun 2018, Published online: 14 Aug 2018

References

  • Berridge, M. V., & Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics, 303, 474–482.
  • Calvo, P., Remuñán-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125–132.
  • Cao, Y., Zhang, C., Shen, W., Cheng, Z., Yu, L., & Ping, Q. (2007). Poly(N-isopropylacrylamide)–Chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Journal of Controlled Release, 120, 186–194.
  • Chen, Y. M., Tsao, T. M., Liu, C. C., Huang, P. M., & Wang, M. K. (2010). Polymerization of catechin catalyzed by Mn-, Fe- and Al-oxides. Colloids and Surfaces B: Biointerfaces, 81, 217–223.
  • Ding, N., Lu, Y., Lee, R. J., Yang, C., Huang, L., Liu, J., & Xiang, G. (2011). Folate receptor-targeted fluorescent paramagnetic bimodal liposomes for tumor imaging. International Journal of Nanomedicine, 6, 2513–2520.
  • Du, J., Zhang, S., Sun, R., Zhang, L., Xiong, C., & Peng, Y. (2005). Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan for drug delivery. II. Release of albumin in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72, 299–304.
  • Duan, J., Liu, M., Zhang, Y., Zhao, J., Pan, Y., & Yang, X. (2012). Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery. Journal of Nanoparticle Research, 14, 1–9.
  • Dubé, D., Francis, M., Leroux, J. C., & Winnik, F. M. (2002). Preparation and tumor cell uptake of poly(N-isopropylacrylamide) folate conjugates. Bioconjugate Chemistry, 13, 685–692.
  • Dudhani, A. R., & Kosaraju, S. L. (2010). Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydrate Polymers, 81, 243–251.
  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.
  • He, X., & Hwang, H. M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24, 671–681.
  • Hernández-Ochoa, L., Macías-Castañeda, C. A., Nevárez-Moorillón, G. V., Salas-Muñoz, E., & Sandoval-Salas, F. (2012). Antimicrobial activity of chitosan-based films including spices’ essential oils and functional extracts. CyTA - Journal of Food, 10, 85–91.
  • Hilgenbrink, A. R., & Low, P. S. (2005). Folate receptor-mediated drug targeting: From therapeutics to diagnostics. Journal of Pharmaceutical Sciences, 94, 2135–2146.
  • Hsieh, S. K., Xu, J. R., Lin, N. H., Li, Y. C., Chen, G. H., Kuo, P. C., … Tzen, J. T. C. (2016). Antibacterial and laxative activities of strictinin isolated from Pu’er tea (Camellia sinensis). Journal of Food and Drug Analysis, 24, 722–729.
  • Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B., … Zeng, X. (2008). Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agricultural & Food Chemistry, 56, 7451–7458.
  • Ilk, S., Sağlam, N., Özgen, M., & Korkusuz, F. (2017). Chitosan nanoparticles enhance the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules, 94, 653–662.
  • Kim, S. H., Kim, J. K., Lim, S. J., Park, J. S., Lee, M. K., & Kim, C. K. (2008). Folate-tethered emulsion for the target delivery of retinoids to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 68, 618–625.
  • Kosaraju, S. L., D’Ath, L., & Lawrence, A. (2006). Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate Polymers, 64, 163–167.
  • Lambert, J. D., & Yang, C. S. (2003). Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 523-524, 201–208.
  • Li, P., Wang, Y., Zeng, F., Chen, L., Peng, Z., & Kong, L. X. (2011). Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydrate Research, 346, 801–806.
  • Liang, J., Li, F., Fang, Y., Yang, W., An, X., Zhao, L., … Hu, Q. (2011). Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids and Surfaces B: Biointerfaces, 82, 297–301.
  • Liu, B., Wang, Y., Yu, Q., Liu, F., Zang, J., Jin, L., … Li, F. (2014). Optimization of preparation of catechin-loaded folate-conjugated chitosan nanoparticles by response surface analysis. Food Science, 35, 46–52.
  • Liu, J., Lu, J. F., Kan, J., Wen, X. Y., & Jin, C. H. (2014). Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 64, 76–83.
  • Luo, H., Su, H., Wang, X., Wang, L., & Li, J. (2012). N-Succinyl-chitosan nanoparticles induced mitochondria-dependent apoptosis in K562. Molecular and Cellular Probes, 26, 164–169.
  • Mansouri, S., Cuie, Y., Winnik, F., Shi, Q., Lavigne, P., Benderdour, M., … Fernandes, J. C. (2006). Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 27, 2060–2065.
  • Mitsunaga, T., Doi, T., Kondo, Y., & Abe, I. (1998). Color development of proanthocyanidins in vanillin-hydrochloric acid reaction. Journal of Wood Science, 44, 125–130.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.
  • Quesille-villalobos, A. M., Torrico, J. S., & Ranilla, L. G. (2013). Phenolic compounds, antioxidant capacity, and in vitro α-amylase inhibitory potential of tea infusions (Camellia sinensis) commercialized in Chile. CyTA - Journal of Food, 11, 60–67.
  • Raj, R., Wairkar, S., Sridhar, V., & Gaud, R. (2018). Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. International Journal of Biological Macromolecules, 109, 27–35.
  • Souza, M. P., Vaz, A. F. M., Correia, M. T. S., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technology, 7, 1149–1159.
  • Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46, 4267–4274.
  • Tan, Y. L., & Liu, C. G. (2009). Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro. Colloids and Surfaces B: Biointerfaces, 69, 178–182.
  • Thanou, M., Verhoef, J. C., & Junginger, H. E. (2001). Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews, 52, 117–126.
  • Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., … Hu, Y. (2017). Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 155, 192–200.
  • Wu, Y., Yang, W., Wang, C., Hu, J., & Fu, S. (2005). Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International Journal of Pharmaceutics, 295, 235–245.
  • Yuan, G., Zhang, X., Tang, W., & Sun, H. (2016). Effect of chitosan coating combined with green tea extract on the melanosis and quality of Pacific white shrimp during storage in ice. CyTA - Journal of Food, 14, 35–40.
  • Zhang, H., Jung, J., & Zhao, Y. (2016). Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydrate Polymers, 137, 82–91.
  • Zhang, L., & Kosaraju, S. L. (2007). Biopolymeric delivery system for controlled release of polyphenolic antioxidants. European Polymer Journal, 43, 2956–2966.
  • Zhu, H., Liu, F., Guo, J., Xue, J., Qian, Z., & Gu, Y. (2011). Folate-modified chitosan micelles with enhanced tumor targeting evaluated by near infrared imaging system. Carbohydrate Polymers, 86, 1118–1129.