2,597
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of strain separated parts, solid-state substrates and light condition on yield and bioactive compounds of Cordyceps militaris fruiting bodies

Efecto de cepas de partes separadas, sustratos en estado sólido y condiciones de luminosidad en el rendimiento y los compuestos bioactivos de los cuerpos fructíferos de Cordyceps militaris

, , , , , , , & show all
Pages 916-922 | Received 14 Apr 2018, Accepted 01 Jul 2018, Published online: 01 Nov 2018

References

  • Adnan, M., Ashraf, S. A., Khan, S., Alshammari, E., & Awadelkareem, A. M. (2017). Effect of ph, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. Cyta Journal of Food, 15, 617–621.
  • Avin, F. A., Bhassu, S., Rameeh, V., Tan, Y. S., & Vikineswary, S. (2016). Genetics and hybrid breeding of pleurotus pulmonarius: Heterosis, heritability and combining ability. Euphytica, 209(1), 85–102.
  • Bhushan, S., Han, S. K., Jae-Mo, S., & Gi-Ho, S. (2012). Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology, 40, 100–106.
  • Bhushan, S., Han, S. K., Won-Ho, L., Seong-Keun, C., Je-O, L., & Jae-Mo, S. (2005). Distribution and in vitro fruiting of Cordyceps militaris in korea. Mycobiology, 33(4), 178–181.
  • Chen, A., Wang, Y., Shao, Y., & Huang, B. (2017). A novel technique for rejuvenation of degenerated caterpillar medicinal mushroom, Cordyceps militaris (ascomycetes), a valued traditional Chinese medicine. International Journal of Medicinal Mushrooms, 19(1), 87–91.
  • Chen, Y. S., Liu, B. L., & Chang, Y. N. (2011). Effects of light and heavy metals on Cordyceps militaris, fruit body growth in rice grain-based cultivation. Korean Journal of Chemical Engineering, 28(3), 875–879.
  • Chiang, S. S., Liang, Z. C., Wang, Y. C., & Liang, C. H. (2017). Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. Journal of Food Composition & Analysis, 60, 51–56.
  • Cunningham, K. G., Manson, W., Spring, F. S., & Hutchinson, S. A. (1950). Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949.
  • Das, S. K., Masuda, M., Hatashita, M., Sakurai, A., & Sakakibara, M. (2008). A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Letters App Microbiologic, 47, 534–538.
  • Dong, J. Z., Ding, J., Yu, P. Z., Lei, C., Zheng, X. J., & Wang, Y. (2013a). Composition and distribution of the main active components in selenium-enriched fruit bodies of Cordyceps militaris link. Food Chemistry, 137, 164–167.
  • Dong, J. Z., Lei, C., Zheng, X. J., Ai, X. R., Wang, Y., & Wang, Q. (2013b). Light wavelengths regulate growth and active components of Cordyceps militaris fruit bodies. Journal of Food Biochemistry, 37, 578–584.
  • Dong, J. Z., Liu, M. R., Lei, C., Zheng, X. J., & Wang, Y. (2012). Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris, link. Applied Biochemistry and Biotechnology, 166, 2030–2036.
  • Fan, D. D., Wang, W., & Zhong, J. J. (2012). Enhancement of cordycepin production in submerged cultures of Cordyceps militaris, by addition of ferrous sulfate. Biochemical Engineering Journal, 60, 30–35.
  • Frederiksen, S., Malling, H., & Klenow, H. (1965). Isolation of 3ʹ-deoxyadenosine (cordycepin) from the liquid medium of Cordyceps militaris (L. ex Fr.) Link. Biochimica Et Biophysica Acta, 95, 189–193.
  • Gu, Y. X., Wang, Z. S., Li, S. X., & Yuan, Q. S. (2007). Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chemistry, 102(4), 1304–1309.
  • Hamburger, M. (2007). Comment on Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. Journal Agricultural Food Chemical. 55, 7213–7214;. author reply 7215–7216.
  • Huang, L., Li, Q., Chen, Y., Wang, X., & Zhou, X. (2009). Determination and analysis of cordycepin and adenosine in the products of cordyceps spp. African Journal of Microbiology Research, 3(12), 957–961.
  • Kho, C. H., Kan, S. C., Chang, C. Y., Cheng, H. Y., Lin, C. C., Chiou, P. C., Shieh C. J., & Liu Y. C. (2016). Analysis of exopolysaccharide production patterns of Cordyceps militaris, under various light-emitting diodes. Biochemical Engineering Journal, 112, 226–232. doi:10.1016/j.bej.2016.04.028
  • Kodama, E. N., McCaffrey, R. P., Yusa, K., & Mitsuya, H. (2000). Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochemical Pharmacology, 59, 273–281.
  • Lian, T. T., Dong, C. H., Yang, T., & Sun, J. D. (2014). Effects of blue light on the growth and bioactive compound production of Cordyceps militaris. Mycosystema, 33, 838–846.
  • Liang, Y., Zhang, G., An, M., & Cai, Z. (2005). Cordyceps Militaris: Ascospore germination and cultural characteristics of progeny population. Mycosystema, 24, 525–532.
  • Lim, L., Lee, C., & Chang, E. (2012). Optimization of solid state culture conditions for the production of adenosine, cordycepin, and d-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (l.: Fr.)link (ascomycetes). International Journal of Medicinal Mushrooms, 14(2), 181–187.
  • Masuda, M., Das, S. K., Fujihara, S., Hatashita, M., & Sakurai, A. (2011). Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. Journal of Bioscience & Bioengineering, 111(1), 55-60.
  • Paterson, R. R. (2008). Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69, 1469–1495.
  • Sari, N., Suparmin, A., Kato, T., & Park, E. Y. (2016). Improved cordycepin production in a liquid surface culture of Cordyceps militaris, isolated from wild strain. Biotechnology Bioproc E, 21, 595–600.
  • Sato, H., & Shimazu, M. (2002). Stromata production for Cordyceps militaris (clavicipitales: Clavicipitaceae) by injection of hyphal bodies to alternative host insects. Applied Entomology & Zoology, 37, 85–92.
  • Shih, I. L., Tsai, K. L., & Hsieh, C. (2006). Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Ccordyceps militaris. Biochemical Engineering Journal, 33(3), 193–201.
  • Shrestha, B., Kim, H. K., Sung, G. H., Spatafora, J. W., & Sung, J. M. (2004). Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnology Bioprocess Engineering, 9, 440–446.
  • Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-Ard, J. J., Shrestha, B., & Spatafora, J. W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 50–59.
  • Sung, J. M., Park, Y. J., Lee, J., Han, S. K., Lee, W. H., Choi, S. K., & Shrestha B. (2006). Selection of superior strains of Cordyceps militaris with enhanced fruiting body productivity. Mycobiology, 34(3), 131–137.
  • Szentmiklosi, A. J., Galajda, Z., Cseppento, A., Gesztelyi, R., Susan, Z., Hegyi, B., & Nanasi P. P. (2015). The janus face of adenosine: Antiarrhythmic and proarrhythmic actions. Current Pharmaceutical Design, 21(8), 965–976.
  • Tang, J. P., Qian, Z. Q., & Zhu, L. (2015). Two-step shake-static fermentation to enhance cordycepin production by Cordyceps militaris. Chem Engineering Trans, 46, 19–24.
  • Turgeon, B. G., & Yoder, O. C. (2000). Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics & Biology Fg & B, 31, 1–5.
  • Wen, T. C., Kang, J. C., Li, G. R., & Lei, B. X. (2008). Effect of culture condition on the fruit body and cordycepin production in Cordyceps militaris in solid-state fermentation. Guizhou Agricultural Sciences, 36, 92–94.
  • Wu, C. Y., Liang, Z. C., Tseng, C. Y., & Hu, S. H. (2016). Effects of illumination pattern during cultivation of fruiting body and bioactive compound production by the caterpillar medicinal mushroom, Cordyceps militaris (ascomycetes). International Journal of Medicinal Mushrooms, 18(7), 589.
  • Xiong, C., Xia, Y., Zheng, P., Shi, S., & Wang, C. (2010). Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology, 1, 25–66.
  • Yang, J., Wang, Y., Garciaroves, P., Björnholm, M., & Fredholm, B. B. (2010). Adenosine a3 receptors regulate heart rate, motor activity and body temperature. Acta Physiologica, 199(2), 221.
  • Yin, J., Xin, X., Weng, Y., & Gui, Z. (2017). Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS One, 12(10), e0186279.
  • Yokoyama, E., Yamagishi, K., & Hara, A. (2005). Structures of the mating-type loci of Cordyceps takaomontana. Applications Environment Microbiologic, 69, 5019–5022.
  • Yoo, H. S., Shin, J. W., Cho, J. H., Son, C. G., Lee, Y. W., Park S. Y., & Cho C. K. (2004). Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacologica Sinica, 25, 657–665.
  • Zhang, G., & Yue, L. (2013). Improvement of fruiting body production in Cordyceps militaris, by molecular assessment. Archives of Microbiology, 195, 579–585.
  • Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., … Wang, C. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology, 12, R116.
  • Zheng, P., Xia, Y., Zhang, S., & Wang, C. (2013). Genetics of Cordyceps and related fungi. Applications Microbio Biotechnology, 97, 2797–2804.
  • Zhou, X., Gong, Z., Su, Y., Lin, J., & Tang, K. (2009). Cordyceps fungi: Natural products, pharmacological functions and developmental products. The Journal of Pharmacy and Pharmacology, 61, 279–291.