1,763
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of amidated low methoxyl pectin on physiochemical and structural properties of polymerized whey proteins

Efectos de la pectina amidada de bajo metoxilo en las propiedades fisicoquímicas y estructurales de las proteínas de suero polimerizadas

, , , &
Pages 923-930 | Received 20 Apr 2018, Accepted 21 Jun 2018, Published online: 13 Nov 2018

References

  • And, B. V., & Foegeding, E. A. (1999). Rheological properties and characterization of polymerized whey protein isolates. Journal of Agricultural & Food Chemistry, 47(9), 3649–3655.
  • Antonov, Y. A., & Takahiro, S. (2009). Macromolecular complexes of the main storage protein of Vicia faba seeds with sulfated polysaccharide. Food Hydrocolloids, 23(3), 996–1006.
  • Barrera, A. M., Ramirez, J. A., Gonzalezcabriales, J. J., & Vazquez, M. (2002). Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocolloids, 16(5), 441–447.
  • Beaulieu, M., Corredig, M., Turgeon, S. L., Wicker, L., & Doublier, J.-L. (2005). The formation of heat-induced protein aggregates in whey protein/pectin mixtures studied by size exclusion chromatography coupled with multi-angle laser light scattering detection. Food Hydrocolloids, 19(5), 803–812.
  • Bounous, G., Batist, G., & Gold, P. (1991). Whey proteins in cancer prevention. Cancer Letters, 57(2), 91–94.
  • Capel, F., Nicolai, T., Durand, D., Boulenguer, P., & Langendorff, V. (2006). Calcium and acid induced gelation of (amidated) low methoxyl pectin. Food Hydrocolloids, 20(6), 901–907.
  • Chen, B., Li, H., Ding, Y., & Suo, H. (2012). Formation and microstructural characterization of whey protein isolate/beet pectin coacervations by laccase catalyzed cross-linking. LWT - Food Science and Technology, 47(1), 31–38.
  • Cheng, J., Xie, S., Yin, Y., Feng, X., Wang, S., Guo, M., Ni, C. (2017). Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents. Journal of the Science of Food and Agriculture, 97(9), 2819–2825.
  • Dai, Q., Zhu, X., Abbas, S., Karangwa, E., Zhang, X., Xia, S., Feng, B. & Jia, C., (2015). Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. Journal of Agricultural and Food Chemistry, 63(16), 4179–4189.
  • Fu, J. T., & Rao, M. A. (2001). Rheology and structure development during gelation of low-methoxyl pectin gels: The effect of sucrose. Food Hydrocolloids, 15(1), 93–100.
  • Fuente, M. A. D. L., Singh, H., & Hemar, Y. (2002). Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends in Food Science & Technology, 13(8), 262–274.
  • Girard, M., Turgeon, S. L., & Gauthier, S. F. (2002). Interbiopolymer complexing between β-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration. Food Hydrocolloids, 16(6), 585–591.
  • Gosal, W. S., & Ross-Murphy, S. B. (2000). Globular protein gelation. Current Opinion in Colloid & Interface Science, 5(3–4), 188–194.
  • Guyomarc’H, F., Renan, M., Chatriot, M., Gamerre, V., & Famelart, M. (2007). Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/κ-casein aggregates. Journal of Agricultural & Food Chemistry, 55(26), 10986–10993.
  • Haque, M. A., Aldred, P., Chen, J., Barrow, C. J., & Adhikari, B. (2013). Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes. Food Chemistry, 141(2), 702–711.
  • Imeson, A., & Imeson, A. (2009). Food stabilisers thickeners & gelling agents. Food Stabilisers, Thickeners and Gelling Agents, 40(1), 464–466.
  • Jones, O. G., & Mcclements, D. J. (2011). Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes. Advances in Colloid & Interface Science, 167(1–2), 49–62.
  • Kehoe, J. J., Wang, L., Morris, E. R., & Brodkorb, A. (2011). Formation of non-native β-lactoglobulin during heat-induced denaturation. Food Biophysics, 6(4), 487–496.
  • Krzeminski, A., Prell, K. A., Weiss, J., & Hinrichs, J. (2014). Environmental response of pectin-stabilized whey protein aggregates. Food Hydrocolloids, 35(35), 332–340.
  • Li, K., & Zhong, Q. (2016). Aggregation and gelation properties of preheated whey protein and pectin mixtures at pH 1.0–4.0. Food Hydrocolloids, 60, 11–20.
  • Liu, J., Shim, Y. Y., Shen, J., Wang, Y., & Reaney, M. J. T. (2017). Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocolloids, 64, 18–27.
  • Martins, J. T., Santos, S. F., Bourbon, A. I., Pinheiro, A. C., González-Fernández, Á., Pastrana, L. M., Cerqueira, M. A., & Vicente, A. A (2016). Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 90, 16–24.
  • May, C. D. (1990). Industrial pectins: Sources, production and applications. Carbohydrate Polymers, 12(1), 79–99.
  • Mezaize, S., Chevallier, S., Le Bail, A., & de Lamballerie, M. (2009). Optimization of gluten-free formulations for French-style breads. Journal of Food Science, 74(3), E140–146.
  • Mounsey, J. S., O’Kennedy, B. T., Fenelon, M. A., & Brodkorb, A. (2008). The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength. Food Hydrocolloids, 22(1), 65–73.
  • Neirynck, J., Kowalski, A. S., Carrara, A., Genouw, G., Berghmans, P., & Ceulemans, R. (2007). Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources. Environmental Pollution (Barking, Essex : 1987), 149(1), 31–43.
  • Neirynck, N., Van Der Meeren, P., Lukaszewicz-Lausecker, M., Cocquyt, J., Verbeken, D., & Dewettinck, K. (2007). Influence of pH and biopolymer ratio on whey protein–Pectin interactions in aqueous solutions and in O/W emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(1–2), 99–107.
  • Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962.
  • Oweng, J., Erica, D., & Davidjulian, M. C. (2009). Formation of biopolymer particles by thermal treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids, 23(5), 1312–1321.
  • Qi, D., Wang, P., Chen, C., Guo, S., & Wang, X. (2016). Polymerization of modified diaspirin cross-linked hemoglobin (DCLHb) with 1,6-bismaleimic-hexane. Artif Cells Nanomed Biotechnol, 44(4), 1069–1074.
  • Ramirez, J. A., RodríGuez, N. R., Uresti, R. M., Velazquez, G., & VáZquez, M. (2007). Fiber-rich functional fish food from striped mullet (Mugil cephalus) using amidated low methoxyl pectin. Food Hydrocolloids, 21(4), 527–536.
  • Ru, Q., Wang, Y., Lee, J., Ding, Y., & Huang, Q. (2012). Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, 88(3), 838–846.
  • Ryan, K. N., & Foegeding, E. A. (2015). Formation of soluble whey protein aggregates and their stability in beverages. Food Hydrocolloids, 43(43), 265–274.
  • Saint-Sauveur, D., Gauthier, S. F., Boutin, Y., & Montoni, A. (2008). Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. International Dairy Journal, 18(3), 260–270.
  • Silva, M. R, Rodrigues, D. F, Lana, F. D. C, Silva, V. D. M, Morais, H. A, & Silvestre, M. P. C. (2010). Peptide profile of enzymatic hydrolysates from whey protein concentrate obtained by action of pancreatin and papain. Food and Nutrition, 35(3), 97-114.
  • Sootsman, J. R., Kong, H., Uher, C., D’Angelo, J. J., Wu, C. I., Hogan, T. P., Caillat, T., & Kanatzidis, M. G. (2008). Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie (International Ed. In English), 47(45), 8618–8622.
  • Sun, W. W., Yu, S. J., Yang, X. Q., Wang, J. M., Zhang, J. B., Zhang, Y., Zhang, Y., & Zheng, E. L. (2011). Study on the rheological properties of heat-induced whey protein isolate–Dextran conjugate gel. Food Research International, 44(10), 3259–3263.
  • Sutariya, S., & Patel, H. (2017). Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions. Food Chemistry, 223, 114–120.
  • Takada, Y., Matsuyama, H., Kato, K., Kobayashi, N., Yamamura, J. I., Yahiro, M., & Ace, S. (1997). Milk whey protein enhances the bone breaking force in ovariectomized rats. Nutrition Research, 17(11), 1709–1720.
  • Tarhan, O., Spotti, M. J., Schaffter, S., Corvalan, C. M., & Campanella, O. H. (2016). Rheological and structural characterization of whey protein gelation induced by enzymatic hydrolysis. Food Hydrocolloids, 61, 211–220.
  • Tavares, C., & Jald, S. (2003). Rheology of galactomannan–Whey protein mixed systems. International Dairy Journal, 13(8), 699–706.
  • Uresti, R. M., López-Arias, N., Ramírez, J. A., & Vázquez, M. (2003). Effect of Amidated Low Methoxyl Pectin on the Mechanical Properties and Colour Attributes of Fish Mince. Food Technology & Biotechnology, 41(2), 131–136.
  • Vá, R. K., & Synytsya, A. (2009). Characterisation of whey proteins-pectin interaction in relation to emulsifying properties of whey proteins. Czech Journal of Food Sciences, 27(6), s4–s8.
  • Valencia-Flores, D. C., Hernandez-Herrero, M., Guamis, B., & Ferragut, V. (2013). Comparing the effects of ultra-high-pressure homogenization and conventional thermal treatments on the microbiological, physical, and chemical quality of almond beverages. Journal of Food Science, 78(2), E199–205.
  • Wang, C., Gao, F., Zhang, T., Wang, Y., & Guo, M. (2015). Physiochemical, textural, sensory properties and probiotic survivability of Chinese Laosuan Nai (protein‐fortified set yoghurt) using polymerised whey protein as a co-thickening agent. International Journal Dairy Technological, 68(2), 261–269.
  • Wang, C., Zheng, H., Liu, T., Wang, D., & Guo, M. (2017). Physiochemical properties and probiotic survivability of symbiotic corn-based yogurt-like product. Journal of Food Science, 82(9), 2142–2150.
  • Wang, H., Wang, C., Wang, M., & Guo, M. (2017). Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture kefir mild 01. Journal of Food Science, 82(11), 2650–2658.
  • Wijaya, W., Meeren, P. V. D., & Patel, A. R. (2016). Cold-set gelation of whey protein isolate and low-methoxyl pectin at low pH. Food Hydrocolloids, 65, 35–45.
  • Zhang, S., Hsieh, F. H., & Vardhanabhuti, B. (2014). Acid-induced gelation properties of heated whey protein–Pectin soluble complex (Part I): Effect of initial pH. Food Hydrocolloids, 36(5), 76–84.
  • Zhang, S., & Vardhanabhuti, B. (2014). Acid-induced gelation properties of heated whey protein−pectin soluble complex (Part II): Effect of charge density of pectin. Food Hydrocolloids, 39(2), 95–103.
  • Zhang, S., Zhang, Z., Lin, M., & Vardhanabhuti, B. (2012). Raman spectroscopic characterization of structural changes in heated whey protein isolate upon soluble complex formation with pectin at near neutral pH. Journal of Agricultural & Food Chemistry, 60(48), 12029.