78,052
Views
220
CrossRef citations to date
0
Altmetric
Reviews

The structural characteristics of starches and their functional properties

Características Estructurales de Almidones y sus Propiedades Funcionales

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1003-1017 | Received 18 Jun 2018, Accepted 24 Aug 2018, Published online: 24 Nov 2018

References

  • Acosta-Osorio, A. A., Herrera-Ruiz, G., Pineda-Gómez, P., de los A.Cornejo-Villegas, M., Martínez-Bustos, F., Gaytán, M., & García, M. E. R. (2011). Analysis of the apparent viscosity of starch in aqueous suspension within agitation and temperature by using rapid visco analyzer system. Mechanical Engineering Research, 1(1), 110.
  • Aee, L. H., Hie, K. N., & Nishinari, K. (1998). DSC and rheological studies of the effect of sources on the gelatinization and retrogradation of a corn starch. Thermochimica Acta, 322, 39–46.
  • Angellier, H., Molina-Boisseau, S., Dole, P., & Dufressne, A. (2006). Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules, 7, 531–539.
  • Ao, Z., & Jane, J. (2007). Characterization and modeling of the a- and b- granule starches of wheat, triticale, and barley. Carbohydrate Polymers, 67, 46–55.
  • Asare, E. K., Jaiswal, S., Maley, J., Baga, M., Sammynaiken, R., Rossnagel, B. G., & Chibbar, R. N. (2011). Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 59, 4743–4754.
  • Bao, J. S., Sun, M., & Corke, H. (2002). Analysis of the genetic behavior of some starches properties in indica rice (Oryza sativa L.): Thermal properties, gel texture, swelling volume. Theoretical and Applied Genetics, 104, 408–413.
  • Cai, C., & Wei, C. (2013). In situ observation of crystallinity disruption patterns during starch gelatinization. Carbohydrate Polymers, 92(1), 469–478.
  • Cai, C., Zhao, L., Huang, J., Chen, Y., & Wei, C. (2014). Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Carbohydrate Polymers, 102, 606–614.
  • Cao, Y. N., Hu, W. G., & Wang, C. S. (2012). Relationship among the key enzymatic activities involved in starch synthesis and amylopectin chain distributions in developing wheat grain. African Journal of Biotechnology, 11(4), 805–814.
  • Chen, C. J., Shen, Y. C., & Yeh, A. I. (2010). Physico-chemical characteristics of media-milled corn starch. Journal of Agriculture and Food Chemistry, 58, 9083–9091.
  • Chen, P., Yu, L., Simon, G. P., Liu, X., Dean, K., & Chen, L. (2010). Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers, 1, 1–9.
  • Choi, S. G., & Kerr, W. L. (2003). Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1H NMR. Lebensmittel-Wissenschaft & Technologie, 51, 1–8.
  • Clifton, L., Green, R., & Frazier, R. (2007). Puroindoline-b mutations control the lipid binding interactions in mixed puroindoline-a: Puroindoline-bsystems. Biochemical, 46, 13929–13937.
  • Copeland, L., Blazek, J., Salman, H., & Tang, C. (2009). Form and functionality of starch. Food Hydrocolloids, 23, 1527–1534.
  • Cornejo-Ramírez, Y. I., Cinco-Moroyoqui, F. J., Ramírez-Reyes, F., Rosas-Burgos, E. C., Osuna-Amarillas, P. S., Wong-Corral, F. J., & Cota-Gastélum, A. G. (2015). Physicochemical characterization of starch from hexaploid triticale (X Triticosecale Wittmack) genotypes. CyTA-Journal of Food, 13(3), 420–426.
  • Cornejo-Ramírez, Y. I., Ramírez-Reyes, F., Cinco-Moroyoqui, F. J., Rosas-Burgos, E. C., Martínez-Cruz, O., Carvajal-Millán, E., & Wong-Corral, F. J. (2016). Starch debranching enzyme activity and its effects on some starch physicochemical characteristics in developing substituted and complete triticales (X Triticosecale Wittmack). Cereal Chemistry, 93(1), 64–70.
  • Dubreil, L., Compoint, J. P., & Marion, D. (1997). The interaction of puroindolines with wheat polar lipids determines their foaming properties. Journal of Agriculture and Food Chemistry, 45, 108–116.
  • Duran, E., Leon, A., Barber, B., & de Barber, C. B. (2001). Effect of low molecular weight dextrins on gelatinization and retrogradation of starch. European Food Research and Technology, 212, 203–207.
  • Finnie, S. M., Jeannotte, R., Morris, C. F., & Faubion, J. M. (2010). Variation in polar lipid composition among near-isogenic whear lines possessing different puroindoline haplotypes. Journal of Cereal Science, 51, 66–72.
  • Finnie, S. M., Jeannotte, R., Morris, C. F., Giroux, M. J., & Faubion, J. M. (2010). Variation in polar lipids located on the surface of wheat starch. Journal of Cereal Science, 51, 73–80.
  • Fuentes-Saragoza, E., Sánchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., Fernández-López, J., & Pérez-Alvarez, J. A. (2011). Resistant starch as prebiotic: A review. Starch/Stärke, 63, 406–415.
  • Gaines, C. S., Raeker, M. Ö., Tilley, M., Finney, P. L., Wilson, J. D., Bechtel, D. B., & Donelson, T. (2000). Associations of starch gel strength, granule size, partial waxiness, milling quality, and kernel texture of twelve soft wheat cultivars. Cereal Chemistry, 77, 163–168.
  • Gallant, D. J., Bouchet, B., & Baldwin, P. M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers, 32(3–4), 177–191.
  • Gao, Q., Li, S., Jian, H., & Liang, S. (2011). Preparation and properties of resistant starch from corn starch with enzymes. African Journal Biotechnology, 10(7), 1186–1193.
  • Geera, B. P., Nelson, J. E., Souza, E., & Huber, K. C. (2006). Composition and properties of a- and b-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chemistry, 83(5), 551–557.
  • Giroux, M., & Morris, C. (1997). A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical Applied Genetics, 95, 857–864.
  • Greenwell, P., & Schofield, J. (1986). A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 63, 379–380.
  • Guo, K., Lin, L., Fan, X., Zhang, L., & Wei, C. (2018). Comparison of structural and functional properties of starches from five fruit kernels. Food Chemistry, 257, 75–82.
  • Han, X. Z., Benmoussa, M., Gray, J. A., BeMiller, J. N., & Hamaker, B. R. (2005). Detection of protein in starch granule channels. Cereal Chemistry, 82(4), 351–355.
  • Hoseney, R. C. (1994). Principles of cereal science and technology (2nd ed., pp. 378). St. Paul. MN: American Association Cereal Chemists (AACC)
  • Hsu, S., Lu, S., & Huang, C. (2000). Viscoelastic changes of rice starch suspensions during gelatinization. Journal of Food Science, 65(2), 215–220.
  • Huber, K. C., & BeMiller, J. N. (1997). Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chemistry, 74, 537–541.
  • Huber, K. C., & BeMiller, J. N. (2000). Channels of maize and sorghum starch granules. Carbohydrate Polymers, 41, 269–276.
  • Juszczak, L., Fortuna, T., & Wodnicka, K. (2002). Characteristics of cereal granules surface using nitrogen adsorption. Journal of Food Engineering, 54, 103–110.
  • Kaur, L., Singh, J., Singh, H., & McCarthy, O. J. (2008). Starch–Cassia gum interactions: A microstructure–Rheology study. Food Chemistry, 111(1), 1–10.
  • Kim, H. S., & Huber, K. C. (2008). Channels within soft wheat starch a- and b-type granules. Journal of Cereal Science, 48, 159–172.
  • Koch, K., & Jane, J. (2000). Morphological changes of granules of different starches by surface gelatinization with calcium chloride. Cereal Chemistry, 77(2), 115–120.
  • Konopka, I., Rotkiewicz, D., & Tańska, M. (2005). Wheat endosperm hardness. Part II. Relationships to content and composition of flour lipids. European Food Research and Technology, 220, 20–24.
  • Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139–1153.
  • Lebail, P., Buléon, A., Shiftan, D., & Marchessault, R. H. (2000). Mobility of lipid in complexes of amylose-fatty acids by deuterium and 13C solid state NMR. Carbohydrate Polymers, 43, 317–326.
  • Lee, C. K., Le, Q. T., Kim, Y. H., Shim, J. H., Lee, S. J., Park, J. H., & Park, K. H. (2008). Enzymatic synthesis and properties of highly branched rice amylose and amylopectin cluster. Journal of Agriculture and Food Chemistry, 56, 126–131.
  • Li, G., He, Z., Peña, R. J., Xia, X., Lillemo, M., & Sun, Q. (2006). Identification of novel secaloindoline-a and secaloindolin-b allels in CIMMYT hexaploid triticale lines. Journal of Cereal Science, 43, 378–386.
  • Li, L., Jiang, H., Campbell, M., Blanco, M., & Jan, J. (2008). Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers, 74, 396–404.
  • Liu, Z., & Han, J. H. (2005). Film-forming characteristics of starches. Journal of Food Science, 70, E31–E36.
  • Lü, B., Guo, Z., & Liang, J. (2008). Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Science in China Series C: Life Sciences, 51(10), 863–871.
  • MacGregor, A. W., & Morgan, J. E. (1986). Hydrolysis of barley starch granules by alpha-amylases from barley malt. Cereal Foods World, 31, 688–693.
  • Mali, S., Karam, L. B., Pereira, R. L., & Grossmann, M. V. E. (2004). Relationship among the composition and physicochemical properties of starches with the characteristics of their films. Journal of Agriculture and Food Chemistry, 52, 7720–7725.
  • Martin, J. M., Meyer, F. D., Smidansky, E. D., Wanjugi, H., Blechl, A. E., & Giroux, M. J. (2006). Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theoretical and Applied Genetics, 113(8), 1563–1570.
  • Matsoukas, N. P., & Morrison, I. R. (1991). Breadmaking quality of ten greek breadheats. II. Relationships of protein, lipid and starch components to baking quality. Journal of the Science of Food and Agriculture, 55, 87–101.
  • Moita, B. C., Lourenҫo, D. S. C. A., Bagulho, A. S., & Beirão-da-Costa, M. L. (2008). Effect of wheat puroindoline allels on functional properties of starch. European Food Research Technology, 226, 1205–1212.
  • Montaño-Leyva, B., Torres-Chávez, P., Ramírez-Wong, B., Plascencia-Jatomea, M., & Brown-Bojórquez, F. (2008). Physical and mechanical properties of durum wheat (triticum durum) starch films prepared with a- and b-type granules. Starch/Stärke, 60, 559–567.
  • Mua, J. P., & Jackson, D. S. (1997). Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry, 45(10), 3840–3847.
  • Nadiha, M. N., Fazilah, A., Bhat, R., & Karim, A. A. (2010). Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry, 121(4), 1053–1059.
  • O’Neill, E. C., & Field, R. A. (2015). Underpinning starch biology with in vitro studies on carbohydrate-active enzymes and biosynthetic glycomaterials. Frontiers in Bioengineering and Biotechnology, 3, 1–6.
  • Oates, C. G. (1997). Towards as understanding of starch granule structure and hydrolysis. Trend Food Science and Technology, 8, 375–382.
  • Pan, D. D., & Jane, J. (2000). Biomacromolecules. Internal Structure of Normal Maize Starch Granules Revealed by Chemical Surface Gelatinization, 1, 126–132.
  • Peroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12(6), 505–513.
  • Philippe, D. (1995). Seminario textura y reología de alimentos. Memorias. Dpto. Eng. Alimentos. Cali-Colombia: Universidad del Valle
  • Pongsawatmanit, R., Thanasukarn, P., & Ikeda, S. (2002). Effect of sucrose on RVA viscosity parameters, water activity and freezable water fraction of cassava starch suspensions. Science Asia, 28(2), 129–134.
  • Ptaszek, A. (2014). Time‐dependent phenomena as evidence for structure‐forming properties of starches. Starch‐Stärke, 66(3–4), 326–336.
  • Reddy, D. K., & Bhotmange, M. G. (2014). Viscosity of starch: A comparative study of Indian rice (Oryza Sativa L.) varieties. International Review of Applied Engineering Research 2014, 4(5), 397–402.
  • Sahlstrõm, S., Bævre, A. B., & Brathen, E. (2003). Impact of starch properties on heart bread characteristics II, purified a- and b-granule fractions. Journal of Cereal Science, 37, 285–293.
  • Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch - A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.
  • Sang, Y., Bean, S., Seib, P. A., Pedersen, J., & Shi, Y. C. (2008). Structure and functional properties of sorghum starches differing in amylose content. Journal of Agriculture and Food Chemistry, 56, 6680–6685.
  • Sevenou, O., Hill, S. E., Farhat, I. A., & Mitchell, J. R. (2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31, 79–85.
  • Shannon, J. C., & Garwood, D. L. (1984). Genetics and physiology of starch development. In R. L. Whistler, J. N. BeMiller, & E. F. Paschall (Eds.), Starch: Chemistry and technology (pp. 25–86). Orlando, Fl: Academic Press.
  • Shewry, P. R., Underwood, C., Wan, Y., Lovegrove, A., Bhandari, D., Toole, G., & Mitchell, R. A. C. (2009). Storage product synthesis and accumulation in developing grains of wheat. Journal of Cereal Science, 50, 106–112.
  • Shi, Y. C., Capitani, T., Trzasko, P., & Jeffcoat, R. (1998). Molecular structure of a low-amylopectin starch and other high-amylose maize starches. Journal of Cereal Science, 27(3), 289–299.
  • Shinde, S. V., Nelson, J. E., & Huber, K. C. (2003). Soft wheat starch pasting behavior in relation to a- and b-type granule content and composition. Cereal Chemistry, 80(1), 91–98.
  • Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food aplications – A review. Food Hydrocolloids, 21, 1–22.
  • Singh, S., Singh, N., Isono, N., & Noda, T. (2010). Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agriculture and Food Chemistry, 58, 1180–1188.
  • Smith, A. M., & Martin, C. (1993). Starch biosynthesis and the potential for its manipulation. in biosynthesis and manipulation of plant products. Plant Biotechnology Series, 3, 1–54.
  • Song, Y., & Jane, J. (2000). Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydrate Polymers, 41, 365–377.
  • Stawski, D. (2008). New determination method of amylose content in potato starch. Food Chemistry, 110(3), 777–781.
  • Stevenebø, A., Salhlström, S., & Svilhus, B. (2006). Starch structure and degree of starch hydrolysis of small and large starch granules from barley varieties varying amylose content. Animal Feed Science and Technology, 130, 23–38.
  • Svihus, B., Uhlen, A. K., & Harstad, O. M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology, 122, 303–320.
  • Tang, H., Mitsunga, T., & Kawamura, Y. (2004). Relationship between functionality and structure in barley starches. Carbohydrate Polymers, 57, 145–152.
  • Tang, H., Watanabe, K., & Mitsunaga, T. (2002). Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, 49(2), 217–224.
  • Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch-composition, fine structure and architecture. Review. Journal of Cereal Science, 39, 151–165.
  • Topping, D. L., & Clifton, P. M. (2011). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064.
  • Uthumporn, U., Zaidul, I. S., & Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88(1), 47–54.
  • Varatharajan, V., Hoover, R., Liu, Q., & Seetharaman, K. (2010). The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydrate Polymers, 81(2), 466–475.
  • Vermeylen, R., Goderis, B., Reynaers, H., & Delcour, J. A. (2005). Gelatinisation related structural aspects of small and large wheat starch granules. Carbohydrate Polymers, 62, 170–181.
  • Verwimp, T., Vandeputte, G. E., Marrant, K., & Delcour, J. A. (2004). Isolation and characterization of rye starch. Journal of Cereal Science, 39, 85–90.
  • Waduge, R. N., Hoover, R., Vasanthan, T., Gao, J., & Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varing amylose content. Food Research International, 39, 59–77.
  • Wu, H. C. H., & Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61, 27–40.
  • Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2015). Advanced nano-biocomposites based on starch. In K. G. Ramawat & J. M. Mérillon (Eds.), Polysaccharides: Bioactivity and biotechnology (1467–1553). Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-03751-6_50-1
  • Yoo, S., & Jane, J. (2002). Structural and physical characteristics of waxy and other wheat starches. Carbohydrate Polymers, 49, 297–305.
  • You, S., & Izydorczyk, M. S. (2002). Molecular characteristics of barley starches with variable amylose content. Carbohydrate Polymers, 49(1), 33–42.