1,777
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effect of in vitro gastrointestinal digestion on the composition and bioactivity of anthocyanins in the fruits of cultivated Lycium ruthenicum Murray

Efecto de la digestión gastrointestinal in vitro sobre la composición y la bioactividad de las antocianinas en los frutos de Lycium ruthenicum Murray cultivados

, , , , , , , & show all
Pages 552-562 | Received 28 Nov 2018, Accepted 09 Apr 2019, Published online: 23 Jul 2019

References

  • Abad-García, B., Berrueta, L., Garmón-Lobato, S., Gallo, B., & Vicente, F. (2009). A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216, 5398–5415. doi:10.1016/j.chroma.2009.05.039
  • Almeida, M. M. B., Sousa, P. H. M., Arriaga, Â. M. C., Prado, G. M., Carvalho Magalhães, C. E., Maia, G. A., & Lemos, T. L. G. (2011). Bioactive compound and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44, 2155–2159. doi:10.1016/j.foodres.2011.03.051
  • Benzie, I. F., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76. doi:10.1006/abio.1996.0292
  • Biehler, E., & Bohn, T. (2010). Methods for assessing aspects of carotenoid bioavailability. Current Nutrition & Food Science, 6, 44–69. doi:10.2174/157340110790909545
  • Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128, 14–21. doi:10.1016/j.foodchem.2011.02.052
  • Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30. doi:10.1016/S0023-6438(95)80008-5
  • Cabrita, L., Frystein, N., & Andersen, M. (2000). Anthocyanin trisaccharides in blue berries of Vaccinium padifolium. Food Chemistry, 69, 33–36. doi:10.1016/S0308-8146(99)00230-7
  • Castaneda-Ovando, A., Pacheco-Hernández, M., Páez-Hernández, M., Rodríguez, J., & Galán-Vidal, C. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113, 859–871. doi:10.1016/j.foodchem.2008.09.001
  • Castanho, M. A. R. B., & Prieto, M. J. E. (1998). Fluorescence quenching data interpretation in biological systems-The use of microscopic models for data analysis and interpretation of complex systems. Biochimica Et Biophysica Acta-Biomembranes, 1373, 1–16. doi:10.1016/S0005-2736(98)00081-9
  • Cilla, A., González-Sarrías, A., Tomás-Barberán, F. A., Espín, J. C., & Barberá, R. (2009). Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chemistry, 114, 813–820. doi:10.1016/j.foodchem.2008.10.019
  • Ferrer-Gallego, R., Goncalves, R., Rivas-Gonzalo, J. C., Escribano-Bailon, M. T., & de Freitas, V. (2012). Interaction of phenolic compounds with bovine serum albumin (BSA) and alpha-amylase and their relationship to astringency perception. Food Chemistry, 135, 651–658. doi:10.1016/j.foodchem.2012.04.123
  • Halliwell, B., Rafter, J., & Jenner, A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? American Journal of Clinical Nutrition, 81, 268S–276S. doi:10.1093/ajcn/81.1.268S
  • Jin, H., Liu, Y., Yang, F., Wang, J., Fu, D., Zhang, X., … Liang, X. (2015). Characterization of anthocyanins in wild Lycium ruthenicum Murray by HPLC-DAD/QTOF-MS/MS. Analytical Methods, 7, 4947–4956. doi:10.1039/C5AY00612K
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York, NY: Springer Publi-cations.
  • Lee, K. W., Kim, Y. J., Kim, D. O., Lee, H. J., & Lee, C. Y. (2003). Major phenolics in apple and their contribution to the total antioxidant capacity. Journal of Agricultural and Food Chemistry, 51, 6516–6520. doi:10.1021/jf034475w
  • Li, D., Meng, X., & Li, B. (2016). Profiling of anthocyanins from blueberries produced in China using HPLC-DAD-MS and exploratory analysis by principal component analysis. Journal of Food Composition and Analysis, 47, 1–7. doi:10.1016/j.jfca.2015.09.005
  • Liobikas, J., Skemiene, K., Trumbeckaite, S., & Borutaite, V. (2016). Anthocyanins in cardioprotection: A path through mitochondria. Pharmacological Research, 18, 556–599.
  • Liu, Z., Dang, J., Wang, Q., Yu, M., Jiang, L., Mei, L., … Tao, Y. (2013). Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity. International Journal of Biological Macromolecules, 61, 127–134. doi:10.1016/j.ijbiomac.2013.06.042
  • Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., & Chou, C. J. (2008). Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. Journal of Medicinal Chemistry, 51, 3555–3561. doi:10.1021/jm800115x
  • Lv, X., Wang, C., Cheng, Y., Huang, L., & Wang, Z. (2013). Isolation and structural characterization of a polysaccharide LRP4-A from Lycium ruthenicum Murr. Carbohydrate Research, 365, 20–25. doi:10.1016/j.carres.2012.10.013
  • Rice-Evans, A. C., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biological Medicine, 20, 933–956. doi:10.1016/0891-5849(95)02227-9
  • Stracke, B. A., Ruufer, C. E., Weibel, F. P., Bub, A., & Watzl, B. (2009). Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. cultivar “Golden Delicious”). Journal of Agricultural and Food Chemistry, 57, 4598–4605. doi:10.1021/jf803961f
  • Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L., & Guo, Y. (2016). Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detail kinetics and fluorescence quenching. Food Chemistry, 208, 51–60. doi:10.1016/j.foodchem.2016.03.093
  • Sun, L., Gidley, M. J., & Warren, F. J. (2017). The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular Nutrition & Food Research, 1700324. doi:10.1002/mnfr.201700324
  • Sun, L., Warren, F. J., Netzel, G., & Gidley, M. J. (2016). 3 or 3’-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. Journal of Functional Foods, 26, 144–156. doi:10.1016/j.jff.2016.07.012
  • Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bioaccessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120, 599–606. doi:10.1016/j.foodchem.2009.10.030
  • Tang, J., Yan, Y., Ran, L., Mi, J., Sun, Y., Lu, L., … Cao, Y. (2017). Isolation, antioxidant property and protective effect on PC12 cell of the main anthocyanin in fruit of Lycium ruthenicum Murray. Journal of Functional Foods, 30, 97–107. doi:10.1016/j.jff.2017.01.015
  • Tenore, G. C., Campiglia, P., Ritieni, A., & Novellino, E. (2013). In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chemistry, 141, 3519–3524. doi:10.1016/j.foodchem.2013.06.051
  • Tomaas-Barberaan, F. A., & Espin, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81, 853–876. doi:10.1002/jsfa.885
  • Wang, Z., Yan, Y., Nisar, T., Zou, L., Yang, X., Niu, P., … Guo, Y. (2018). Comparison and multivariate statistical analysis of anthocyanin composition in Lycium ruthenicum Murray from different regions to trace geographical origins: The case of China. Food Chemistry, 246, 233–241. doi:10.1016/j.foodchem.2017.11.030
  • White, B. L., Howard, L. R., & Prior, R. L. (2010). Proximate and polyphenolic characterization of cranberry pomace. Journal of Agriculture and Food Chemistry, 58, 4030–4036. doi:10.1021/jf902829g
  • Wu, T., Lv, H., Wang, F., & Wang, Y. (2016). Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells. Journal of Agriculture and Food Chemistry, 64, 2280–2288. doi:10.1021/acs.jafc.6b00035
  • Xu, Y., Simon, J. E., Ferruzzi, M. G., Ho, L., Pasinetti, G. M., & Wu, Q. (2012). Quantification of anthocyanidins in the grapes and grape juice products with acid assisted hydrolysis using LC/MS. Journal of Functional Foods, 4, 710–717. doi:10.1016/j.jff.2012.04.010
  • Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International Journal of Biological Macromolecules, 64, 213–223. doi:10.1016/j.ijbiomac.2013.12.007
  • You, Q., Chen, F., Wang, X., Luo, P. G., & Jiang, Y. (2011). Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities. Journal of Agricultural and Food Chemistry, 59, 9506–9511. doi:10.1021/jf201452v
  • Zheng, G., Deng, J., Wen, L., You, L., Zhao, Z., & Zhou, L. (2018). Release of phenolic compounds and antioxidant capacity of Chinese hawthorn “Crataegus pinnatifida“ during in vitro digestion. Journal of Functional Foods, 40, 76–85. doi:10.1016/j.jff.2017.10.039
  • Zheng, J., Ding, C., Wang, L., Li, G., Shi, J., Li, H., … Suo, Y. R. (2011). Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum. Food Chemistry, 126, 859–865. doi:10.1016/j.foodchem.2010.11.052