1,761
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of high pressure homogenization on rheological properties of rice starch

Efectos de la homogeneización a alta presión sobre las propiedades reológicas del almidón de arroz

ORCID Icon, , , &
Pages 716-723 | Received 24 Mar 2019, Accepted 07 Jul 2019, Published online: 30 Sep 2019

References

  • Bet, C. D., de Oliveira, C. S., Colman, T. A. D., Marinho, M. T., Lacerda, L. G., Ramos, A. P., & Schnitzler, E. (2018). Organic amaranth starch: A study of its technological properties after heat-moisture treatment. Food Chemistry, 264, 435–442. doi:10.1016/j.foodchem.2018.05.021
  • Byars, J. (2002). Effect of a starch-lipid fat replacer on the rheology of soft-serve ice cream. Journal of Food Science, 67(6), 2177–2182. doi:10.1111/jfds.2002.67.issue-6
  • Chang, L. T. (1998). The Greatly developing uses of starch. Journal of South China University of Technology, 26, 68–74.
  • Che, L., Li, D., Wang, L., Özkan, N., Chen, X. D., & Mao, Z. (2008). Rheological properties of dilute aqueous solutions of cassava starch. Carbohydrate Polymers, 74(3), 385–389. doi:10.1016/j.carbpol.2008.03.007
  • Colussi, R., Pinto, V. Z., El Halal, S. L. M., Vanier, N. L., Villanova, F. A., Marques, E., … Dias, A. R. G. (2014). Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate Polymers, 103, 405–413. doi:10.1016/j.carbpol.2013.12.070
  • Deng, R., & Xu, R. (2014). Compared of application of modified starch in oyster sauce. Food Science and Technology, 09, 263–266.
  • Dong-soon, S., Zihua, A., Jay-lin, J., & Huang, J. (2005). Structure and application of starch. Guangxi Journal of Light Industry, 04, 27–29.
  • Fu, Z., Wang, L., Li, D., Wei, Q., & Adhikari, B. (2011). Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydrate Polymers, 86(1), 202–207. doi:10.1016/j.carbpol.2011.04.032
  • Guo, L. (2018). Sweet potato starch modified by branching enzyme, β-amylase and transglucosidase. Food Hydrocolloids, 83, 182–189. doi:10.1016/j.foodhyd.2018.05.005
  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111(1), 50–55. doi:10.1016/j.foodchem.2008.03.036
  • Khurana, L. K., Singh, R., Singh, H., & Sharma, M. (2018). Systematic development and optimization of an in-situ gelling system for moxifloxacin ocular nanosuspension using high-pressure homogenization with an improved encapsulation efficiency. Current Pharmaceutical Design, 24(13), 1434–1445. doi:10.2174/1381612824666180403115106
  • Kulicke, W., Eidam, D., Kath, F., Kix, M., & Kull, A. H. (1996). Hydrocolloids and rheology: Regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch - Starke, 48(3), 105–114. doi:10.1002/(ISSN)1521-379X
  • Li, M., Tian, X., Jin, R., & Li, D. (2018). Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 123, 654–660. doi:10.1016/j.indcrop.2018.07.043
  • Li, M., Wang, L., Li, D., Cheng, Y., & Adhikari, B. (2014). Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers, 102, 136–143. doi:10.1016/j.carbpol.2013.11.021
  • Li, Y., & Lim, S. (2016). Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch. Carbohydrate Polymers, 140, 253–259. doi:10.1016/j.carbpol.2015.12.023
  • Poonguzhali, R., Khaleel Basha, S., & Sugantha Kumari, V. (2018). Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. International Journal of Biological Macromolecules, 114, 204–213. doi:10.1016/j.ijbiomac.2018.03.092
  • Šárka, E., & Dvořáček, V. (2017). Waxy starch as a perspective raw material (a review). Food Hydrocolloids, 69, 402–409. doi:10.1016/j.foodhyd.2017.03.001
  • Shi, A., Li, D., Wang, L., Zhou, Y., & Adhikari, B. (2012). Spray drying of starch submicron particles prepared by high pressure homogenization and mini-emulsion cross-linking. Journal of Food Engineering, 113(3), 399–407. doi:10.1016/j.jfoodeng.2012.06.017
  • Turcanu, M., Siegert, N., Secouard, S., Brito-de La Fuente, E., Balan, C., & Gallegos, C. (2018). An alternative elongational method to study the effect of saliva on thickened fluids for dysphagia nutritional support. Journal of Food Engineering, 228, 79–83. doi:10.1016/j.jfoodeng.2018.02.015
  • Vernon-Carter, E. J., Alvarez-Ramirez, J., Bello-Perez, L. A., Garcia-Hernandez, A., Roldan-Cruz, C., & Garcia-Diaz, S. (2018). In vitro digestibility of normal and waxy corn starch is modified by the addition of Tween 80. International Journal of Biological Macromolecules, 116, 715–720. doi:10.1016/j.ijbiomac.2018.05.076
  • Wang, B., Li, D., Wang, L., Chiu, Y. L., Chen, X. D., & Mao, Z. (2008). Effect of high-pressure homogenization on the structure and thermal properties of maize starch. Journal of Food Engineering, 87(3), 436–444. doi:10.1016/j.jfoodeng.2007.12.027
  • Wang, B., Li, D., Wang, L., Liu, Y., & Adhikari, B. (2012). Effect of high-pressure homogenization on microstructure and rheological properties of alkali-treated high-amylose maize starch. Journal of Food Engineering, 113(1), 61–68. doi:10.1016/j.jfoodeng.2012.05.021
  • Wang, Q., Feng, Y., & Wen, Q. (2005). Applications of waxy maize starch and its modified starch in food industry. Cereal & Food Industry, 04, 23–25.
  • Zhou, M., Gao, M., Kong, Q., & Zhu, P. (2018). High-performance starch/clay bionanocomposite for textile warp sizing. Polymer Composites, 39, E441–E447. doi:10.1002/pc.v39.S1