1,711
Views
2
CrossRef citations to date
0
Altmetric
Articles

Gluten-free crispbread with freeze-dried blackberry: quality and mineral composition

Pan crujiente sin gluten con polvo de mora liofilizado: calidad y composición mineral

ORCID Icon, , &
Pages 841-849 | Received 01 Apr 2019, Accepted 20 Aug 2019, Published online: 15 Oct 2019

References

  • Amidžić Klarić, D., Klarić, I., Velić, D., & Vedrina Dragojević, I. (2011). Evaluation of mineral and heavy metal contents in Croatian blackberry wines. Czech Journal of Food Sciences, 29(3), 260–267. doi:10.17221/CJFS
  • Aydogdu, A., Sumnu, G., & Sahin, S. (2018). Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes. Journal of Food Science and Technology, 55(2), 667–677. doi:10.1007/s13197-017-2976-y
  • Barba, F. J., Galanakis, C. M., Esteve, M. J., Frigola, A., & Vorobiev, E. (2015). Potential use of pulsed electric technology and ultrasounds to improve the recovery of high-added value compounds from blackberries. Journal of Food Engineering, 167, 38–44. doi:10.1016/j.jfoodeng.2015.02.001
  • Chen, W., Xu, Y., Zhang, L., Su, H., & Zheng, X. (2016). Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity. Food Chemistry, 212, 620–627. doi:10.1016/j.foodchem.2016.06.031
  • Ciurzyńska, A., & Lenart, A. (2011). Freeze-drying - Application in food processing and biotechnology - A review. Polish Journal of Food and Nutrition Sciences, 61(3), 165–171. doi:10.2478/v10222-011-0017-5
  • Clerici, M. T. P. S., & Carvalho-Silva, L. B. (2011). Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International, 44(7), 1658–1670. doi:10.1016/j.foodres.2011.04.020
  • Csanádi, Z., Cserjési, P., Nemestóthy, N., & Bélafi-Bakó, K. (2012). Characterization of pectins from press residues of berries by FT-IR spectroscopy. Acta Alimentaria, 41(1), 94–99. doi:10.1556/AAlim.41.2012.1.11
  • Dabash, V., Burešová, I., Tokár, M., Zacharová, M., & Gál, R. (2017). The effect of added pumpkin flour on sensory and textural quality of rice bread. Journal of Microbiology, Biotechnology and Food Sciences, 6(6), 1269–1271. doi:10.15414/jmbfs.2017.6.6.1269-1271
  • de Vargas, E. F., Jablonski, A., Flôres, S. H., & de Rios, A. O. (2017). Obtention of natural dyes from industrial blackberry pulp residues (Rubussp). Journal of Food Processing and Preservation, 41(1), e12777. doi:10.1111/jfpp.12777
  • Delgado-Andrade, C., Conde-Aguilera, J. A., Haro, A., Pastoriza de la Cueva, S., & Rufián-Henares, J. Á. (2010). A combined procedure to evaluate the global antioxidant response of bread. Journal of Cereal Science, 52(2), 239–246. doi:10.1016/j.jcs.2010.05.013
  • Dogan, I. S. (2006). Factors affecting wafer sheet quality. International Journal of Food Science and Technology, 41(5), 569–576. doi:10.1111/j.1365-2621.2005.01117.x
  • Dogan, I. S., Yildiz, O., & Meral, R. (2016). Optimization of corn, rice and buckwheat formulations for gluten-free wafer production. Food Science and Technology International, 22(5), 410–419. doi:10.1177/1082013215610981
  • Dos Santos, S. S., Rodrigues, L. M., Da Costa, S. C., Bergamasco, R. D. C., & Madrona, G. S. (2017). Microencapsulation of bioactive compounds from blackberry pomace (Rubus fruticosus) by spray drying technique. International Journal of Food Engineering, 13(9). doi:10.1515/ijfe-2017-0047
  • Drewnowski, A., Nordensten, K., & Dwyer, J. (1998). Replacing sugar and fat in cookies: Impact on product quality and preference. Food Quality and Preference, 9(1–2), 13–20. doi:10.1016/S0950-3293(97)00017-7
  • Elisia, I., Hu, C., Popovich, D. G., & Kitts, D. D. (2006). Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chemistry, 101(3), 1052–1058. doi:10.1016/j.foodchem.2006.02.060
  • Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., & Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64(6), 1451–1469. doi:10.1093/jxb/ert035
  • Fan, L., Zhang, S., Yu, L., & Ma, L. (2006). Evaluation of antioxidant property and quality of breads containing Auricularia auricula polysaccharide flour. Food Chemistry, 101(3), 1158–1163. doi:10.1016/j.foodchem.2006.03.017
  • Fan-Chiang, H. J., & Wrolstad, R. E. (2005). Anthocyanin pigment composition of blackberries. Journal of Food Science, 70(3), C198–C202. doi:10.1111/j.1365-2621.2000.tb16011.x
  • Fan-Chiang, H.-J., & Wrolstad, R. E. (2006). Anthocyanin pigment composition of blackberries. Journal of Food Science, 70(3), C198–C202. doi:10.1111/j.1365-2621.2005.tb07125.x
  • Farías Cervantes, V. S., Delgado Lincon, E., Solís Soto, A., Medrano Roldan, H., & Andrade González, I. (2016). Effect of spray drying temperature and agave fructans concentration as carrier agent on the quality properties of blackberry powder. International Journal of Food Engineering, 12(5), 451–459. doi:10.1515/ijfe-2015-0287
  • Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & de Aguirre, J. M. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245. doi:10.1111/j.1365-2621.2012.02964.x
  • Franceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2013). Physical and functional properties of blackberry freeze- and spray-dried powders. Drying Technology, 32(2), 197–207. doi:10.1080/07373937.2013.814664
  • Fuleki, T., & Francis, F. J. (1968). Quantitative methods for anthocyanins. Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33, 72–77. doi:10.1111/j.1365-2621.1968.tb00887.x
  • Gilbert, W., Teeple, J., Kaume, L., Graves, S., Howard, L., & Devareddy, L. (2011). The dose-dependent effects of blackberries and their anthocyanins in preventing morbidities related to diet-induced obesity in ovariectomized rats. The FASEB Journal, 25(Supplement 1), ISSN (online), 1530–6860.
  • Giusti, M. M., & Wrolstad, R. E. (2005). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Handbook of food analytical chemistry (Vols. 2–2, pp. 19–31). John Wiley and Sons Ltd. doi:10.1002/0471709085.ch18
  • Gularte, M. A., de la Hera, E., Gómez, M., & Rosell, C. M. (2012). Effect of different fibers on batter and gluten-free layer cake properties. LWT - Food Science and Technology, 48(2), 209–214. doi:10.1016/j.lwt.2012.03.015
  • Hager, T. J., Howard, L. R., & Prior, R. L. (2010). Processing and storage effects on the ellagitannin composition of processed blackberry products. Journal of Agricultural and Food Chemistry, 58(22), 11749–11754. doi:10.1021/jf102964b
  • Hatcher, R. A. (1908). The united states pharmacopeia. Journal of the American Medical Association, 30. doi:10.1001/jama.1908.25310270030002f
  • Huber, R., & Schoenlechner, R. (2017). Waffle production: Influence of batter ingredients on sticking of waffles at baking plates—Part II: Effect of fat, leavening agent, and water. Food Science and Nutrition, 5(3), 513–520. doi:10.1002/fsn3.425
  • Jacques, A. C., & Zambiazi, R. C. (2011). Phytochemicals in blackberry. Semina-Ciencias Agrarias, 32(1), 245–260. doi:10.5433/1679-0359.2011v32n1p245
  • Jakobek, L., & Seruga, M. (2012). Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. International Journal of Food Properties, 15(1), 122–133. doi:10.1080/10942911003754684
  • Kaume, L., Howard, L. R., & Devareddy, L. (2012). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. doi:10.1021/jf203318p
  • Konrade, D., Klava, D., & Gramatina, I. (2017). Cereal crispbread improvement with dietary fibre from apple by-products. CBU International Conference Proceedings, 5, 1143. doi:10.12955/cbup.v5.1085
  • Kosmala, M., Jurgoński, A., Juśkiewicz, J., Karlińska, E., Macierzyński, J., Rój, E., & Zduńczyk, Z. (2017). Chemical composition of blackberry press cake, polyphenolic extract, and defatted seeds, and their effects on cecal fermentation, bacterial metabolites, and blood lipid profile in rats. Journal of Agricultural and Food Chemistry, 65(27), 5470–5479. doi:10.1021/acs.jafc.7b01876
  • Lamberts, L., & Delcour, J. A. (2008). Carotenoids in raw and parboiled brown and milled rice. Journal of Agricultural and Food Chemistry, 56(24), 11914–11919. doi:10.1021/jf802613c
  • Lim, H. S., Park, S. H., Ghafoor, K., Hwang, S. Y., & Park, J. (2011). Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chemistry, 4(15), 1577–1582. doi:10.1016/j.foodchem.2010.08.016
  • Mazza, G., & Miniati, E. (1993). Anthocyanins in fruits, vegetables and grains. Boca Raton, FL: CRC Press. doi:10.1002/food.19940380317
  • Mert, S., Sahin, S., & Sumnu, G. (2015). Development of gluten-free wafer sheet formulations. LWT - Food Science and Technology, 63(2), 1121–1127. doi:10.1016/j.lwt.2015.04.035
  • Mikulic-Petkovsek, M., Koron, D., Zorenc, Z., & Veberic, R. (2017). Do optimally ripe blackberries contain the highest levels of metabolites? Food Chemistry, 215, 41–49. doi:10.1016/j.foodchem.2016.07.144
  • Milošević, T., Milošević, N., & Mladenović, J. (2016). Soluble solids, acidity, phenolic content and antioxidant capacity. Fruits, 71(4), 239–248. doi:10.1051/fruits/2016011
  • Milosevic, T., Mratinic, E., Milosevic, N., Glisic, I., & Mladenovic, J. (2012). Segregation of blackberry cultivars based on the fruit physico-chemical attributes. Tarim Bilimleri Dergisi, 18(2), 100–109. doi:10.1501/Tarimbil_0000001197
  • Muralikrishna, G., & Rao, M. V. S. S. T. S. (2007). Cereal non-cellulosic polysaccharides: Structure and function relationship - An overview. Critical Reviews in Food Science and Nutrition, 47(6), 599–610. doi:10.1080/10408390600919056
  • Pasqualone, A., Bianco, A. M., & Paradiso, V. M. (2013). Production trials to improve the nutritional quality of biscuits and to enrich them with natural anthocyanins. CyTA-Journal of Food, 11, 301–308. doi:10.1080/19476337.2012.753113
  • Patras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science and Technology, 21(1), 3–11. doi:10.1016/j.tifs.2009.07.004
  • Pereira, A. P. A., Clerici, M. T. P. S., & Pastore, G. M. (2017). Blackberry fruit in whole grain bakery products: Technological quality and phenolic compounds. Bioactive compounds: Sources, properties and applications. ISBN: 978-1-53612-418-7.
  • Pereira, A. P. A., Clerici, M. T. P. S., Schmiele, M., & Pastore, G. M. (2019). Blackberries (Rubus sp.) and whole grain wheat flour in cookies: Evaluation of phenolic compounds and technological properties. Journal of Food Science and Technology, 56(3), 1445–1453. doi:10.1007/s13197-019-03628-6
  • Pergola, C., Rossi, A., Dugo, P., Cuzzocrea, S., & Sautebin, L. (2006). Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide - Biology and Chemistry, 15(1), 30–39. doi:10.1016/j.niox.2005.10.003
  • Quiles, A., Llorca, E., Schmidt, C., Reißner, A. M., Struck, S., Rohm, H., & Hernando, I. (2018). Use of berry pomace to replace flour, fat or sugar in cakes. International Journal of Food Science and Technology, 53(6), 1579–1587. doi:10.1111/ijfs.13765
  • Rosell, C. M., Barro, F., Sousa, C., & Mena, M. C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. Journal of Cereal Science, 59(3), 354–364. doi:10.1016/j.jcs.2013.10.001
  • Różyło, R., Dziki, D., Gawlik-Dziki, U., Cacak-Pietrzak, G., Miś, A., & Rudy, S. (2015). Physical properties of gluten-free bread caused by water addition. International Agrophysics, 29(3), 353–364. doi:10.1515/intag-2015-0042
  • Różyło, R., Rudy, S., Krzykowski, A., & Dziki, D. (2015). Novel application of freeze-dried Amaranth Sourdough in gluten-free bread production. Journal of Food Process Engineering, 38(2), 135–143. doi:10.1111/jfpe.12152
  • Różyło, R., Wójcik, M., Dziki, D., Biernacka, B., Cacak-Pietrzak, G., Gawłowski, S., & Zdybel, A. (2019). Freeze-dried elderberry and chokeberry as natural colorants for gluten-free wafer sheets. International Agrophysics, 33(2), 217–225. doi:10.31545/intagr/109422
  • Rudy, S., Dziki, D., Krzykowski, A., Gawlik-Dziki, U., Polak, R., Rózyło, R., & Kulig, R. (2015). Influence of pre-treatments and freeze-drying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.). LWT - Food Science and Technology, 63(1), 497–503. doi:10.1016/j.lwt.2015.03.067
  • Schulz, M., Seraglio, S. K. T., Della Betta, F., Nehring, P., Valese, A. C., Daguer, H., & Fett, R. (2019). Blackberry (Rubusulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Research International, 122, 627–634. Elsevier Ltd. doi:10.1016/j.foodres.2019.01.034
  • Singleton, V. L., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic. American Journal of Enology and Viticulture, 6, 144–158.
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. doi:10.3390/ijms161024673
  • Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Czyz, J. (2013). The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 141(1), 451–458. doi:10.1016/j.foodchem.2013.03.048
  • Van Hoed, V., De Clercq, N., Echim, C., Andjelkovic, M., Leber, E., Dewettinck, K., & Verhè, R. (2009). Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. Journal of Food Lipids, 16(1), 33–49. doi:10.1111/j.1745-4522.2009.01130.x
  • Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT - Food Science and Technology, 75, 72–77. doi:10.1016/j.lwt.2016.08.042
  • Yamashita, C., Chung, M. M. S., Dos Santos, C., Mayer, C. R. M., Moraes, I. C. F., & Branco, I. G. (2017). Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT - Food Science and Technology, 84, 256–262. doi:10.1016/j.lwt.2017.05.063