2,466
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Phytochemical profiles and anti-diabetic benefits of two edible Amaranthus species

Perfiles fitoquímicos y beneficios antidiabéticos de dos especies de Amaranthus comestibles

, , , &
Pages 94-101 | Received 29 Oct 2019, Accepted 10 Jan 2020, Published online: 05 Feb 2020

References

  • Adefegha, S. A. (2018). Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. Journal of Dietary Supplements, 15, 977–1009. doi:10.1080/19390211.2017.1401573
  • Anilakumar, K. R., Khanum, F., Sudarshanakrishna, K. R., & Santhanam, K. (2004). Effect of amaranth leaves on dimethylhydrazine-induced changes in multicomponent antioxidant system of rat liver. Indian Journal of Experimental Biology, 42, 595–600.
  • Buchholz, T., & Melzig, M. F. (2016). Medicinal plants traditionally used for treatment of obesity and diabetes mellitus - screening for pancreatic lipase and α-amylase inhibition. Phytotherapy Research, 30, 260–266. doi:10.1002/ptr.v30.2
  • Choi, J. S., Bhakta, H. K., Fujii, H., Min, B. S., Park, C. H., Yokozawa, T., & Jung, H. A. (2016). Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease. Archives of Pharmacal Research, 39, 409–420. doi:10.1007/s12272-015-0682-8
  • Craft, N. E. (1992). Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. Journal of Agricultural and Food Chemistry, 40, 431–434. doi:10.1021/jf00015a013
  • de Camargo, A. C., Regitano-d’Arce, M. A., Biasoto, A. C., & Shahidi, F. (2016). Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chemistry, 212, 395–402. doi:10.1016/j.foodchem.2016.05.047
  • Guo, X., Liu, J., Cai, S., Wang, O., & Ji, B. (2016). Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Obesity Research & Clinical Practice, 10, 327–339. doi:10.1016/j.orcp.2015.08.004
  • Huang, W. Y., Davidge, S. T., & Wu, J. (2013). Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment. Critical Reviews in Food Science and Nutrition, 53, 615–630. doi:10.1080/10408398.2010.550071
  • Huang, Y. P., & Lai, H. M. (2016). Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis, 24, 564–574. doi:10.1016/j.jfda.2016.01.004
  • Hue, S. M., Boyce, A. N., & Somasundram, C. (2012). Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (Ipomoea batatas). Australian Journal of Crop Science, 6, 375–380.
  • Jang, Y. P., Zhou, J., Nakanishi, K., & Sparrow, J. R. (2005). Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochemistry and Photobiology, 81, 529–536. doi:10.1562/2004-12-14-RA-402.1
  • Kalita, D., Holm, D. G., LaBarbera, D. V., Petrash, J. M., & Jayanty, S. S. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PloS One, 13, e0191025. doi:10.1371/journal.pone.0191025
  • Kazeem, M. I., Adamson, J. O., & Ogunwande, I. A. (2013). Modes of inhibition of alphaamylase and alpha -glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Research International, 2013, 527570. doi:10.1155/2013/527570
  • Kitts, D. D., Wijewickreme, A. N., & Hu, C. (2000). Antioxidant properties of north American ginseng extract. Molecular and Cellular Biology, 203, 1e10.
  • Kračmarová, A., Drtinová, L., & Pohanka, M. (2015). Possibility of acetylcholinesterase overexpression in Alzheimer disease patients after therapy with acetylcholinesterase inhibitors. Acta Medica (Hradec Kralove) / Universitas Carolina, Facultas Medica Hradec Kralove, 58, 37–42. doi:10.14712/18059694.2015.91
  • Kushwaha, S., Chawla, P., & Kochhar, A. (2014). Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. Journal of Food Science and Technology, 51, 3464–3469. doi:10.1007/s13197-012-0859-9
  • Le, K., Chiu, F., & Ng, K. (2007). Identification and quantification of antioxidants in Fructus lycii. Food Chemistry, 105, 353–363. doi:10.1016/j.foodchem.2006.11.063
  • Li, K., Yao, F., Xue, Q., Fan, H., Yang, L., Li, X., … Liu, Y. (2018). Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign-score method. Chemistry Central Journal, 12, 82. doi:10.1186/s13065-018-0445-y
  • Li, S. Y., Yang, D., Fu, Z. J., Woo, T., Wong, D., & Lo, A. C. (2012). Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiology Disease, 45, 624–632. doi:10.1016/j.nbd.2011.10.008
  • Ma, H., Liu, W., Frost, L., Wang, L., Kong, L., Dain, J. A., & Seeram, N. P. (2015). The hydrolysable gallotannin, penta-O-galloyl-b-D-glucopyranoside, inhibits the formation of advanced glycation endproducts by protecting protein structure. Molecular bioSystems, 11, 1338e1347. doi:10.1039/C4MB00722K
  • Maroyi, A. (2013). Use of weeds as traditional vegetables in Shurugwi District, Zimbabwe. Journal of Ethnobiology and Ethnomedicine, 9, 60. doi:10.1186/1746-4269-9-60
  • Mashhadi, N. S., Zakerkish, M., Mohammadiasl, J., Zarei, M., Mohammadshahi, M., & Haghighizadeh, M. H. (2018). Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pacific Journal of Clinical Nutrition, 27, 341–346. doi:10.6133/apjcn.052017.11
  • McHardy, S. F., Wang, H. L., McCowen, S. V., & Valdez, M. C. (2017). Recent advances in acetylcholinesterase inhibitors and reactivators: An update on the patent literature (2012-2015). Expert Opinion on Therapeutic Patents, 27, 455–476. doi:10.1080/13543776.2017.1272571
  • Rastogi, A., & Shukla, S. (2013). Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition, 53, 109–125. doi:10.1080/10408398.2010.517876
  • Rowan, S., Bejarano, E., & Taylor, A. (2018). Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1864, 3631–3643. doi:10.1016/j.bbadis.2018.08.036
  • Roy, M., Sen, S., & Chakraborti, A. S. (2008). Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Science, 82, 1102–1110. doi:10.1016/j.lfs.2008.03.011
  • Różańska, D., & Regulska-Ilow, B. (2018). The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Advances in Clinical and Experimental Medicine, 27, 135–142. doi:10.17219/acem/64983
  • Sani, H. A., Rahmat, A., Ismail, M., Rosli, R., & Endrini, S. (2004). Potential anticancer effect of red spinach (Amaranthus gangeticus) extract. Asia Pacific Journal of Clinical Nutrition, 13, 396–400.
  • Sarkar, R., Nandan, C. K., Mandal, S., Patra, P., Das, D., & Islam, S. S. (2009). Structural characterization of a heteropolysaccharide isolated from hot water extract of the stems of Amaranthus tricolor Linn. (Amaranthus gangeticus L.). Carbohydrate Research, 344, 2412–2416. doi:10.1016/j.carres.2009.09.014
  • Sarker, U., & Oba, S. (2018). Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Scientific Report, 8, 12349. doi:10.1038/s41598-018-30897-6
  • Sun, Z., Liu, J., Zeng, X., Huangfu, J., Jiang, Y., Wang, M., & Chen, F. (2011). Astaxanthin is responsible for antiglycoxidative properties of microalga Chlorella zofingiensis. Food Chemistry, 126, 1629–1635. doi:10.1016/j.foodchem.2010.12.043
  • Szwajgier, D., Baranowska-Wojcik, E., & Borowiec, K. (2018). Phenolic acids exert anticholinesterase and cognition-improving effects. Current Alzheimer Research, 15, 531–543. doi:10.2174/1567205014666171128102557
  • Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Reviews in Medicinal Chemistry, 10, 315–331. doi:10.2174/138955710791331007
  • Verma, R. K., Sisodia, R., & Bhatia, A. L. (2002). Radioprotective role of Amaranthus gangeticus Linn.: A biochemical study on mouse brain. Journal of Medicinal Food, 5, 189–195. doi:10.1089/109662002763003339
  • Wei, H., Li, H., Wan, S. P., Zeng, Q. T., Cheng, L. X., Jiang, L. L., & Peng, Y. D. (2017). Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: A mechanistic study. Medical Science Monitor, 23, 2007–2016. doi:10.12659/MSM.902196