4,433
Views
5
CrossRef citations to date
0
Altmetric
Review

Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods

, , , , ORCID Icon, , & show all
Pages 101-114 | Received 18 Aug 2022, Accepted 06 Dec 2022, Published online: 12 Jan 2023

References

  • Abenoza, M., Benito, M., Saldaña, G., Álvarez, I., Raso, J., & Sánchez-Gimeno, A. C. (2013). Effects of pulsed electric field on yield extraction and quality of olive oil. Food and Bioprocess Technology, 6(6), 1367–1373. https://doi.org/10.1007/s11947-012-0817-6
  • Ahmad, R., Ahmad, N., & Shehzad, A. (2019). Solvent and temperature effects of Accelerated solvent extraction (ASE) coupled with ultra-high pressure liquid chromatography (UHPLC-DAD) technique for determination of Thymoquinone in commercial food samples of black seeds (Nigella sativa). Food Chemistry, 309, 125740. https://doi.org/10.1016/j.foodchem.2019.125740
  • Ahmed, J., & Ramaswamy, H. S. (2006). High pressure processing of fruits and vegetables. Stewart Postharvest Review, 2(1), 1–8. https://doi.org/10.2212/spr.2006.1.8
  • Alexandre, E. M. C., Araújo, P., Duarte, M. F., de Freitas, V., Pintado, M., & Saraiva, J. A. (2017). Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food and Bioprocess Technology, 10(5), 886–900. https://doi.org/10.1007/s11947-017-1867-6
  • Almohammed, F., Kouba, M., & Khelfa, A. (2018). Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food and Bioproducts Processing, 103, 95–103. https://doi.org/10.1016/j.fbp.2017.03.005
  • Ameer, K., Shahbaz, H. M., & Kwon, J.-H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295–315. https://doi.org/10.1111/1541-4337.12253
  • Ani, T. A., Calinescu, L., & Lavric, V. (2011). Microwave extraction of active principles from medicinal plants.Chemistry and. Materials Science, 74(2), 129–142.
  • Anne, Y. L., Tixier, S. F., Vian, M. A., & Chemat, F. (2013). Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. Trends in Analytical Chemistry, 47, 1–11. https://doi.org/10.1016/j.trac.2013.02.007
  • Arshadi, M., Attard, T. M., Lukasik, R. M., Brncic, M., Lopes, A. M. D., Finell, M., Geladi, P., Gerschenson, L. N., Gogus, F., Herrero, M., Hunt, A. J., Ibanez, E., Kamm, B., Mateos-Aparicio, I., Matías, A., Mavroudis, N. E., Montoneri, E., Morais, A. R. C., Nilsson, C. … Yuste-Cordoba, F. J. (2016). Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chemistry, 18(23), 6160–6204. https://doi.org/10.1039/C6GC01389A
  • Attri, R., & Grover, S. (2015). Analyzing the scheduling system stage of production system life cycle. Management Science Letters, 5(5), 431–442. https://doi.org/10.5267/j.msl.2015.3.011
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  • Banozic, M., Babic, J., & Jokic, S. (2020). Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Industrial Crops & Products, 144, 112009. https://doi.org/10.1016/j.indcrop.2019.112009
  • Banožić, M., Banjari, I., Jakovljević, M., Šubarić, D., Tomas, S., Babić, J., & Jokić, S. (2019). Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules, 24(8), 1611. https://doi.org/10.3390/molecules24081611
  • Barba, F. J., Brianceau, S., Turk, M., Boussetta, N., & Vorobiev, E. (2015). Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food and Bioprocess Technology, 8(5), 1139–1148. https://doi.org/10.1007/s11947-015-1482-3
  • Barba, F. J., Zhu, Z., Koubaa, M., de Souza Sant’Ana, A., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96–109. https://doi.org/10.1016/j.tifs.2016.01.006
  • Bernardo, J. R., Gírio, F. M., & Łukasik, R. M. (2019). The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis. Molecules, 24(4), 808–825. https://doi.org/10.3390/molecules24040808
  • Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10–22. https://doi.org/10.1016/j.tifs.2018.12.004
  • Buckow, R., Ng, S., & Toepfl, S. (2013). Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Comprehensive Reviews in Food Science and Food Safety, 12(5), 455–467. https://doi.org/10.1111/1541-4337.12026
  • Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596. https://doi.org/10.1111/1541-4337.12071
  • Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017a). Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357–377. https://doi.org/10.1016/j.ifset.2017.04.016
  • Chemat, F., Rombaut, N. A., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615
  • Chemat, F., Vian, M. A., Tixier, A. S. F., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAc Trends in Analytical Chemistry, 118, 248–263. https://doi.org/10.1016/j.trac.2019.05.037
  • Chemat, F., & Vorobiev, E. (2019). Green food processing techniques preservation, transformation and extraction. Elsevier.
  • Chemat, F., Zill-E, H., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  • Cheng, Y.-S., Lu, P.-M., Huang, C.-Y., & Wu, J.-J. (2017). Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. The Journal of Supercritical Fluids, 130, 246–252. https://doi.org/10.1016/j.supflu.2016.12.021
  • Chen, F. L., Zhang, Q., Liu, J. L., Gu, H. Y., & Yang, L. (2017). An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique. Ultrasonics Sonochemistry, 37, 267–278. https://doi.org/10.1016/j.ultsonch.2017.01.012
  • Chiremba, C., Taylor, J. R. N., Rooney, L. W., & Beta, T. (2012). Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chemistry, 134(1), 81–88. https://doi.org/10.1016/j.foodchem.2012.02.067
  • Concha, J., Soto, C., Chamy, R., & Zuniga, M. E. (2004). Enzymatic pretreatment on rose-hip oil extraction: Hydrolysis and pressing conditions. Journal of the American Oil Chemists’ Society, 81(6), 549–552. https://doi.org/10.1007/s11746-006-0939-y
  • Corrales, M., Garcia, A. F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90(4), 415–421. https://doi.org/10.1016/j.jfoodeng.2008.07.003
  • Cravottoa, G., Boffa, L., & Mantegna, S. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15(5), 898–902. https://doi.org/10.1016/j.ultsonch.2007.10.009
  • Cravotto, G., Mariatti, F., Gunjevic, V., Secondo, M., Villa, M., Parolin, J., & Cavaglià, G. (2018). Pilot scale cavitational reactors and other enabling technologies to design the industrial recovery of polyphenols from agro-food by-products, a technical and economical overview. Foods, 7(9), 130. https://doi.org/10.3390/foods7090130
  • Curko, N., Tomasevi, M., Bubalo, M. C., Gracin, L., Redovnikovi, I. R., & Gani, K. K. (2017). Extraction of proanthocyanidins and anthocyanins from grape skin by using ionic liquids. Food Technology and Biotechnology, 55(3), 429–437. https://doi.org/10.17113/ftb.55.03.17.5200
  • Daraee, A., Ghoreishi, S. M., & Hedayati, A. (2018). Supercritical CO2 extraction of chlorogenic acid from sunflower (Helianthus annuus) seed kernels: Modeling and optimization by response surface methodology. The Journal of Supercritical Fluids, 144, 19–27. https://doi.org/10.1016/j.supflu.2018.10.001
  • Essien, S. O., Young, B., & Baroutian, S. (2020). Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science & Technology, 97, 156–169. https://doi.org/10.1016/j.tifs.2020.01.014
  • Evrendilek, G. A. (2017). Impacts of pulsed electric field and heat treatment on quality and sensory properties and microbial inactivation of pomegranate juice. Food Science and Technology International, 23(8), 668–680. https://doi.org/10.1177/1082013217715369
  • Ferrentino, G., Asaduzzaman, M., & Scampicchio, M. M. (2016). Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Critical Reviews in Food Science and Nutrition, 58(3), 386–404. https://doi.org/10.1080/10408398.2016.1180589
  • Formato, A., Gallo, M., Ianniello, D., Montesano, D., & Naviglio, D. (2013). Supercritical fluid extraction of α- and β-acids from hops compared to cyclically pressurized solid–liquid extraction. The Journal of Supercritical Fluids, 84, 113–120. https://doi.org/10.1016/j.supflu.2013.09.021
  • Fornari, T., Vicente, G., Vazquez, E., García-Risco, M. R., & Reglero, G. (2012). Isolation of essential oil from different plants and herbs by supercritical fluid extraction. Journal of Chromatography A, 1250, 34–48. https://doi.org/10.1016/j.chroma.2012.04.051
  • Franco, D., Rodríguez-Amado, I., Agregán, R., Munekata, P. E. S., Vázquez, J. A., Barba, F. J., & Lorenzo, J. M. (2018). Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage. LWT - Food Science and Technology, 88, 1–8. https://doi.org/10.1016/j.lwt.2017.09.027
  • Frohlich, P. C., Santos, K., & Palu, F. (2018). Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2. The Journal of Supercritical Fluids, 143, 313–320. https://doi.org/10.1016/j.supflu.2018.09.009
  • Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Bursać Kovačević, D. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), e12638. https://doi.org/10.1111/jfpe.12638
  • Garmus, T. T., Paviani, L. C., Queiroga, C. L., & Cabral, F. A. (2015). Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. The Journal of Supercritical Fluids, 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016
  • Gavahian, M., & Chu, Y. (2018). Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science & Emerging Technologies, 50, 34–41. https://doi.org/10.1016/j.ifset.2018.10.006
  • Giacomettia, J., Kovacevicb, D. B., Putnikb, P., Gabrićb, D., Bilušićc, T., Krešićd, G., Stulićb, V., Barbae, F. J., Chematf, F., Barbosa-Cánovasg, G., & Jambrak, A. R. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113, 245–262. https://doi.org/10.1016/j.foodres.2018.06.036
  • Gillet, S., Aguedo, M., Petitjean, L., Morais, A. R. C., Lopes, A. M. D., Lukasik, R. M., & Anastas, P. T. (2017). Lignin transformations for high value applications: Towards targeted modifications using green chemistry. Green Chemistry, 19(18), 4200–4233. https://doi.org/10.1039/C7GC01479A
  • Gopalasatheeskumar, K. (2018). Significant role of soxhlet extraction process in phytochemical research. Mintage Journal of Pharmaceutical & Medical Sciences, 7(1), 43–47.
  • Granato, D., Nunes, D. S., & Barba, F. J. (2017). An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends in Food Science & Technology, 62, 13–22. https://doi.org/10.1016/j.tifs.2016.12.010
  • Herrero, M., Castro-Puyana, M., Mendiola, J. A., & Ibañez, E. (2013). Compressed fluids for the extraction of bioactive compounds. TrAc Trends in Analytical Chemistry, 43, 67–83. https://doi.org/10.1016/j.trac.2012.12.008
  • Herrero, M., Plaza, M., Cifuentes, A., & Ibáñez, E. (2010). Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. Journal of Chromatography A, 1217(16), 2512–2520. https://doi.org/10.1016/j.chroma.2009.11.032
  • Howard, L., & Pandjaitan, N. (2008). Pressurized liquid extraction of flavonoids from Spinach. Journal of Food Science, 73(3), 151–157. https://doi.org/10.1111/j.1750-3841.2007.00658.x
  • Hsu, H., Hsiao, P., Kuo, T., Chiang, S., Chend, S., Chioue, S., Linga, X., Liang, M., Cheng, W., & Jer-Yiing Houng, J. (2016). Antioxidant and anti-inflammatory activities of Lonicera japonica Thunb. var. sempervillosa Hayata flower bud extracts prepared by water, ethanol and supercritical fluid extraction techniques. Industrial Crops and Products, 89, 543–549. https://doi.org/10.1016/j.indcrop.2016.05.010
  • Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33(1), 54–62. https://doi.org/10.1016/j.tifs.2013.07.001
  • Jahanshaei, S., Tabarsa, T., & Asghari, J. (2012). Eco-friendly tannin-phenol formaldehyde resin for producing wood composites. Pigment and Resin Technology, 41(5), 296–301. https://doi.org/10.1108/03699421211264857
  • Jung, S. (2016). Applications and opportunities for pressure-assisted extraction. In V. M. Balasubramaniam, Gustavo V. Barbosa-Cánovas, & Huub L. M. Lelieveld (Eds.), High pressure processing of food (pp. 173–191). Springer.
  • Kapadiya, S. M., Parikh, J. K., & Desai, M. A. (2018). A greener approach towards isolating clove oil from buds of Syzygium aromaticum using microwave radiation. Industrial Crops and Products, 112, 626–632. https://doi.org/10.1016/j.indcrop.2017.12.060
  • Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13(2), 105–113. https://doi.org/10.1002/pca.631
  • Koubaa, M., Mhemdi, H., Barba, F. J., Angelotti, A., Bouaziz, F., Chaabouni, S. E., & Vorobiev, E. (2017). Seed oil extraction from red prickly pear using hexane and supercritical CO2: Assessment of phenolic compound composition, antioxidant and antibacterial activities. Journal of the Science of Food and Agriculture, 97(2), 613–620. https://doi.org/10.1002/jsfa.7774
  • Koubaa, M., Roselló-Soto, E., Šic Žlabur, J., Režek Jambrak, A., Brnčić, M., Grimi, N., & Barba, F. J. (2015). Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. Journal of Agricultural and Food Chemistry, 63(31), 6835–6846. https://doi.org/10.1021/acs.jafc.5b01994
  • Kovačević D, B., Barba, F. J., Granato, D., Galanakis, C. M., Herceg, Z., Dragović-Uzelac, V., & Putnik, P. (2018). Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chemistry, 254 150–157. https://doi.org/10.1016/j.foodchem.2018.01.192
  • Laroze, L., Soto, C., & Zuniga, M. (2010). Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electronic Journal of Biotechnology, 13(6), 11–12. https://doi.org/10.2225/vol13-issue6-fulltext-12
  • Latif, S., & Anwar, F. (2009). Physicochemical studies of hemp (Cannabis sativa) seed oil using enzyme‐assisted cold‐pressing. European Journal of Lipid Science and Technology, 111(10), 1042–1048. https://doi.org/10.1002/ejlt.200900008
  • Li, B. B., Smith, B., & Hossain, M. (2013). Extraction of phenolics from citrus peels. I. Solvent extraction method. Separation and Purification Technology, 48(2), 182–188. https://doi.org/10.1016/j.seppur.2005.07.005
  • Liu, W., Fu, Y. J., Zu, Y. G., Kong, Y., Zhang, L., Zu, B. S., & Efferth, T. (2009). Negative-pressure cavitation extraction for the determination of flavonoids in pigeon pea leaves by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1216(18), 3841–3850. https://doi.org/10.1016/j.chroma.2009.02.073
  • Liu, X., Jing, X., & Li, G. (2019). A process to acquire essential oil by distillation concatenated liquid-liquid extraction and flavonoids by solid-liquid extraction simultaneously from Helichrysum arenarium (L.) Moench inflorescences under ionic liquid-microwave mediated. Separation and Purification Technology, 209, 164–174. https://doi.org/10.1016/j.seppur.2018.07.028
  • Lopes, A. M. D., Lins, R. M. G., Rebelo, R. A., & Lukasik, R. M. (2018). Biorefinery approach for lignocellulosic biomass valorisation with and acidic ionic liquid. Green Chemistry, 20(17), 4043–4057. https://doi.org/10.1039/C8GC01763H
  • Luo, M., Yang, L. Q., Yao, X. H., Mu, F. S., Zhang, D. Y., Song, Z. Y., Qiao, Q., Fu, Y. J., & Zu, Y. G. (2014). Optimization of enzyme-assisted negative pressure cavitation extraction of five main indole alkaloids from Catharanthus roseus leaves and its pilot-scale application. Separation and Purification Technology, 125, 66–73. https://doi.org/10.1016/j.seppur.2013.12.034
  • Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., D’Alessandro, N., Martinez, J., & Colacino, E. (2017). Sonochemistry in non-conventional, green solvents or solvent free reactions. Tetrahedron, 73(6), 609–653. https://doi.org/10.1016/j.tet.2016.12.014
  • Machmudah, S., Widiyastuti, S. W., Wahyudiono, H. K., & Goto, M. (2017). Sub and supercritical fluids extraction of phytochemical compounds from Eucheuma cottonii and Gracilaria sp. Chemical Engineering Transactions, 56, 1291–1296. https://doi.org/10.3303/CET1756216
  • Maier, T., Göppert, A., Kammerer, D. R., Schieber, A., & Carle, R. (2008). Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research and Technology, 227, 267–275. https://doi.org/10.1007/s00217-007-0720-y
  • Masango, P. (2005). Cleaner production of essential oils by steam distillation. Journal of Cleaner Production, 13(8), 833–839. https://doi.org/10.1016/j.jclepro.2004.02.039
  • McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction: Principles and practice (2nd ed.). Elsevier.
  • Mei, M., Huang, X., & Chen, L. (2019). Recent development and applications of polyionic liquids in microextraction techniques. TrAc Trends in Analytical Chemistry, 112, 123–134. https://doi.org/10.1016/j.trac.2019.01.003
  • Mnayer, D., Fabiano-Tixier, A.-S., Petitcolas, E., Ruiz, K., Hamieh, T., & Chemat, F. (2017). Extraction of green absolute from thyme using ultrasound and sunflower oil. Resource-Efficient Technologies, 3(1), 12–21. https://doi.org/10.1016/j.reffit.2017.01.007
  • Mroczek, T., & Mazurek, J. (2009). Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Analytica Chimica Acta, 633(2), 188–196. https://doi.org/10.1016/j.aca.2008.11.053
  • Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18. https://doi.org/10.1016/j.aca.2011.07.018
  • Nan, H., & Anderson, J. L. (2018). Ionic liquid stationary phases for multidimensional gas chromatography. TrAc Trends in Analytical Chemistry, 105, 367–379. https://doi.org/10.1016/j.trac.2018.03.020
  • Niranjan, K., & Hanmoungjai, P. (2004). Enzyme-aided aquous extraction. In N. T. Dunford and H. B. Dunford (Eds.), Nutritionally enhanced edible oil processing (p. 314 pages). AOCS Publishing.
  • Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing-Process Intensification, 42(2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5
  • Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848. https://doi.org/10.1016/j.foodchem.2015.07.096
  • Passos, H., Freire, M. G., & Coutinho, J. A. P. (2014). Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 16(12), 4786–4815. https://doi.org/10.1039/C4GC00236A
  • Pathak, A. K., Ameta, C., Ameta, R., & Punjabi, P. B. (2016). Microwave-assisted organic synthesis in ionic liquids. Journal of Heterocyclic Chemistry, 53(6), 1697–1705. https://doi.org/10.1002/jhet.2515
  • Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013
  • Pimentel-Moral, S., Borrás-Linares, I., Lozano-Sánchez, J., Arráez-Román, D., Martínez-Férez, A., & Segura-Carretero, A. (2018). Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. Journal of Pharmaceutical and Biomedical Analysis, 156, 313–322. https://doi.org/10.1016/j.jpba.2018.04.050
  • Pourmortazavi, S. M., & Hajimirsadeghi, S. S. (2007). Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1–2), 2–24. https://doi.org/10.1016/j.chroma.2007.06.021
  • Prasad, M. K. N., Ismail, A., & Ming, J. Y. (2011). High pressure- assisted extraction: Method, technique, and application. In N. Lebovka; E. Vorobiev, and E. Chemat (Eds.), Enhancing extraction processes in the food industry (pp. 303–322). CRC Press.
  • Puertolas, E., Koubaa, M., & Barba, F. J. (2016). An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Research International, 80, 19–26. https://doi.org/10.1016/j.foodres.2015.12.009
  • Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44. https://doi.org/10.1016/j.tibtech.2011.06.014
  • Putnik, P., & Kovačevć, D. B. (2017). Fresh-cut apples spoilage and predictive microbial growth under modified atmosphere packaging. In R. Rai and J. B. Aswathanarayan (Eds.), Food safety and protection (p. 728). CRC Press.
  • Putnik, P., Lorenzo, J. M., Barba, F. J., Roohinejad, S., Jambrak, A. R., Granato, D., Montesano, D., & Kova_cevíc, D. B. (2018). Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods, 7(7), 106–122. https://doi.org/10.3390/foods7070106
  • Qi, X. L., Peng, X., Huang, Y. Y., Li, L., Wei, Z.-F., Zu, Y. G., & Fu, Y. J. (2015). Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Industrial Crops and Products, 70, 142–148. https://doi.org/10.1016/j.indcrop.2015.03.026
  • Rahal, N. B., Barba, F. J., Barth, D., & Chevalot, I. (2015). Supercritical CO2 extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells. Food and Chemical Toxicology, 83, 275–282. https://doi.org/10.1016/j.fct.2015.07.006
  • Ramos, M., Jimenez, A., & Garrigos, M. C. (2019). IL-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. TrAc Trends in Analytical Chemistry, 119, 115616. https://doi.org/10.1016/j.trac.2019.07.027
  • Raso, J., Frey, W., Ferrari, G., Pataro, G., Knorr, D., Teissie, J., & Miklavčič, D. (2016). Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innovative Food Science & Emerging Technologies, 37, 312–321. https://doi.org/10.1016/j.ifset.2016.08.003
  • Rodriguez-Meizoso, I., Castro-Puyana, M., Börjesson, P., Mendiola, J. A., Turner, C., & Ibanez, E. (2012). Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. The Journal of Supercritical Fluids, 72, 205–212. https://doi.org/10.1016/j.supflu.2012.09.005
  • Roohinejad, S., Koubaa, M., Barba, F. J., Leong, S. Y., Khelfa, A., Greiner, R., & Chemat, F. (2017).In: S. M. Hashemi, A. M. Khaneghah, & A. de Souza Sant'Ana (Eds.), Extraction methods of essential oils from herbs and spices. In Essential oils in food processing: Chemistry, safety and applications (Ist ed., pp. 21–55). John Wiley & Sons Ltd.
  • Roohinejad, S., Oey, I., Everett, D. W., & Niven, B. E. (2014). Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food and Bioprocess Technology, 7(11), 3336–3348. https://doi.org/10.1007/s11947-014-1334-6
  • Rosello-Soto, E., Koubaa, M., Moubarik, A., Lopes, R. P., Saraiva, J. A., Boussetta, N., & Barba, F. J. (2015). Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends in Food Science & Technology, 45(2), 296–310. https://doi.org/10.1016/j.tifs.2015.07.003
  • Rosello-Soto, E., Parniakov, O., Deng, Q., Patras, A., Koubaa, M., Grimi, N., & Barba, F. J. (2016). Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Engineering Reviews, 8(2), 214–234. https://doi.org/10.1007/s12393-015-9131-1
  • Rostagno, M., Palma, M., & Barrosa, C. G. (2004). Pressurized liquid extraction of isoflavones from soybeans. Analytica chimica acta, 522(2), 169–177. https://doi.org/10.1016/j.aca.2004.05.078
  • Rostagno, M. A., Palma, M., & Barroso, C. G. (2007). Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Analytica chimica acta, 597, 265–272. https://doi.org/10.1016/j.aca.2007.07.006
  • Selvamuthukumaran, M., & Shi, J. (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1(1), 61–81. https://doi.org/10.1093/fqs/fyx004
  • Serment-Moreno, V., Jacobo-Velázquez, D. A., Torres, J. A., & Welti-Chanes, J. (2017). Microstructural and physiological changes in plant cell induced by pressure: Their role on the availability and pressure-temperature stability of phytochemicals. Food Engineering Reviews, 9(4), 314–334. https://doi.org/10.1007/s12393-017-9158-6
  • Shen, J., & Shao, X. (2005). A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Analytical and Bioanalytical Chemistry, 383(6), 1003–1008. https://doi.org/10.1007/s00216-005-0078-6
  • Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations - a review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10–23. https://doi.org/10.1016/j.cep.2012.01.003
  • Shukla, S. K., Khokarale, S. G., Bul, T. Q., & Mikkola, J.-P. T. (2019). Ionic liquids: Potential materials for carbon dioxide capture and utilization. Frontiers in Materials, 6(42), 1–8. https://doi.org/10.3389/fmats.2019.00042
  • Shu, Y., Ko, M. Y., & Chang, Y. S. (2003). Microwave-assisted extraction of ginsenosides from ginseng root. Microchemical Journal, 74(2), 131–139. https://doi.org/10.1016/S0026-265X(02)00180-7
  • Soliva-Fortuny, R., Balasa, A., Knorr, D., & Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends in Food Science & Technology, 20(11–12), 544–556. https://doi.org/10.1016/j.tifs.2009.07.003
  • Srinivas, K., & King, J. W. (2010). Supercritical carbon dioxide and subcritical water: Complementary agents in the processing of functional foods. In J. Smith and E. Charter (Eds.), Functional food products development (pp. 39–78). Blackwell Publishing Ltd.
  • Tekin, K., Akalın, M. K., & Şeker, M. G. (2015). Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Industrial Crops and Products, 77, 954–960. https://doi.org/10.1016/j.indcrop.2015.09.071
  • Teng, H., Ghafoor, K., & Yong-Hee, C. (2009). Optimization of Microwave-assisted extraction of active components from Chinese Quince using response surface methodology. Journal of the Korean Society for Applied Biological Chemistry, 52(6), 694–701. https://doi.org/10.3839/jksabc.2009.115
  • Tintchev, F., Dobreva, A., Schulz, H., & Toepfl, S. (2012). Effect of pulsed electric fields on yield and chemical composition of rose oil (Rosa damascena Mill.). Journal of Essential Oil-Bearing Plants, 15(6), 876–884. https://doi.org/10.1080/0972060X.2012.10662589
  • Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013
  • Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: Extraction, bioactivities, and their uses for food preservation. Journal of Food Science, 79(7), 1231–1249. https://doi.org/10.1111/1750-3841.12492
  • Ullah, H., Wilfred, C. D., & Shaharun, M. S. (2019). Ionic liquid-based extraction and separation trends of bioactive compounds from plant biomass. Separation Science and Technology, 54(4), 559–579. https://doi.org/10.1080/01496395.2018.1505913
  • Valdes, A., & Garrigos, M. C. (2016). Microencapsulation of natural antioxidant compounds obtained from biomass wastes: A review. Materials Science Forum, 875, 112–126. https://doi.org/10.4028/www.scientific.net/MSF.875.112
  • Vankar, P. S. (2004). Essential oils and fragrances from natural sources. Resonance, 9(4), 30–41. https://doi.org/10.1007/BF02834854
  • Vardanega, R., Santos, D., & De Almeida, M. A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 8(16), 88–95. https://doi.org/10.4103/0973-7847.134231
  • Veillet, S., Tomao, V., & Chemat, F. (2010). Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil. Food Chemistry, 123(3), 905–911. https://doi.org/10.1016/j.foodchem.2010.05.005
  • Vinatoru, M., Mason, T. J., & Calinescu, L. (2017). Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of functional compounds from plant materials. Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002
  • Wang, Y., Hou, Q., Ju, M., & Li, W. (2019). New developments in material preparation using a combination of ionic liquids and microwave irradiation. Nanomaterials, 9(4), 647–673. https://doi.org/10.3390/nano9040647
  • Wang, X. Q., Wei, W., Zhao, C. J., Li, C. Y., Luo, M., Wang, W., Zu, Y. G., Efferth, T., & Fu, Y. J. (2015). Negative-pressure cavitation coupled with aqueous two-phase extraction and enrichment of flavonoids and stilbenes from the pigeon pea leaves and the evaluation of antioxidant activities. Separation and Purification Technology, 156, 116–123. https://doi.org/10.1016/j.seppur.2015.09.028
  • Xiao, J., Chen, G., & Li, N. (2018). Ionic liquid solutions as a green tool for the extraction and isolation of natural products. Molecules, 23(7), 1765–1788. https://doi.org/10.3390/molecules23071765
  • Xie, P., Huang, L., Zhang, C., You, F., & Zhang, Y.-L. (2015). Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food and Bioproducts Processing, 93, 29–38. https://doi.org/10.1016/j.fbp.2013.10.004
  • Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A. L. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323–330. https://doi.org/10.1016/j.seppur.2013.10.040
  • Xynos, N., Papaefstathiou, G., Psychis, M., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A.-L. (2012). Development of a green extraction procedure with super/subcritical fluids to produce extracts enriched in oleuropein from olive leaves. The Journal of Supercritical Fluids, 67, 89–93. https://doi.org/10.1016/j.supflu.2012.03.014
  • Yan, L.-G., He, L., & Xi, J. (2017). High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds - a review. Critical Reviews in Food Science and Nutrition, 57(13), 2877–2888. https://doi.org/10.1080/10408398.2015.1077193
  • Yousefi, M., Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Wysokowski, M., Jesionowski, T., Ehrlich, H., & Mirsadeghi, S. (2019). Supercritical fluid extraction of essential oils. Trends in Analytical Chemistry, 118, 182–193. https://doi.org/10.1016/j.trac.2019.05.038
  • Zakaria, S. M., & Kamal, S. M. M. (2015). Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Engineering Reviews, 8(1), 23–34. https://doi.org/10.1007/s12393-015-9119-x
  • Zermane, A., Meniai, A. H., & Barth, D. (2010). Supercritical CO2 extraction of essential oil from Algerian Rosemary (Rosmarinus officinalis l.). Chemical Engineering Technology, 33(3), 489–498. https://doi.org/10.1002/ceat.200900381
  • Zhang, Q. (2018). Ionic liquids in capillary electrophoresis for enantioseparation. TrAc Trends in Analytical Chemistry, 100, 145–154. https://doi.org/10.1016/j.trac.2018.01.001
  • Zhang, J., Wena, C., Zhanga, H., Duana, Y., & Maa, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, 95, 183–195. https://doi.org/10.1016/j.tifs.2019.11.018
  • Zhang, D.-Y., Zhang, S., Zu, Y.-G., Fu, Y.-J., Kong, Y., Gao, Y., Zhao, J.-T., & Efferth, T. (2010). Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. Separation and Purification Technology, 74(2), 261–270. https://doi.org/10.1016/j.seppur.2010.06.015
  • Zhang, D.-Y., Zu, Y. G., Fu, Y. J., Luo, M., Gu, C. B., Wang, W., & Yao, X. H. (2011). Negative pressure cavitation extraction and antioxidant activity of biochanin a and genistein from the leaves of Dalbergia odorifera T. Chen. Separation and Purification Technology, 83, 91–99. https://doi.org/10.1016/j.seppur.2011.09.017
  • Zhao, B. S., Fu, Y. J., Wang, W., Zu, Y. G., Gu, C. B., Luo, M., & Efferth, T. (2011). Enhanced extraction of isoflavonoids from Radix Astragali by incubation pretreatment combined with negative pressure cavitation and its antioxidant activity. Innovative Food Science and Emerging Technologies, 12(4), 577–585. https://doi.org/10.1016/j.ifset.2011.05.003
  • Zhao, Y., & Saldaña, M. D. A. (2019). Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. The Journal of Supercritical Fluids, 143, 97–106. https://doi.org/10.1016/j.supflu.2018.07.025
  • Zhou, Y. J., Xue, C. M., Zhang, S. S., Yao, G. M., Zhang, L., & Wang, S. J. (2017). Effects of high intensity pulsed electric fields on yield and chemical composition of rose essential oil. International Journal of Agricultural and Biological Engineering, 10(3), 295–301.
  • Zhu, Z., Zhang, R., Zhan, S., He, J., Barba, F., Cravotto, G., & Li, S. (2017). Recovery of oil with unsaturated fatty acids and polyphenols from Chaenomelessinensis (Thouin) Koehne: Process optimization of pilot-scale subcritical fluid assisted extraction. Molecules, 22(10), 1788. https://doi.org/10.3390/molecules22101788
  • Zizovic, I., Senerovic, L., Moric, I., Adamovic, T., Jovanovic, M., Krusic, M. K., Misic, D., Stojanovic, D., & Milovanovica, S. (2018). Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus. The Journal of Supercritical Fluids, 140, 11–20. https://doi.org/10.1016/j.supflu.2018.05.025
  • Zlabur, J. S., Voca, S., Brncic, M., & Brncic, S. R. (2018). New trends in food technology for green recovery of bioactive compounds from plant materials. In: A. M. Grumezescu & A. M. Holban (Eds.), Role of materials science in food bioengineering. Handbook of food bioengineering (pp. 1–36). Academic Press.