974
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comparative metabolomic study of Camellia oleifera fruit under light and temperature stress

ORCID Icon, , , , , , & show all
Pages 171-180 | Received 01 Jul 2022, Accepted 15 Dec 2022, Published online: 13 Feb 2023

References

  • Cantón, F. R., Suárez, M. F., & Cánovas, F. M. (2005). Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research, 83(2), 265–278. https://doi.org/10.1007/s11120-004-9366-9
  • Cui, Y., Liu, Z., Zhao, Y., Wang, Y., Huang, Y., Li, L., Wu, H., Xu, S., & Hua, J. (2017). Overexpression of heteromeric GhAccase subunits enhanced oil accumulation in upland cotton. Plant Molecular Biology Reporter, 35(2), 287–297. https://doi.org/10.1007/s11105-016-1022-y
  • Djanaguiraman, M., Narayanan, S., Erdayani, E., & Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC plant biology, 20(1), 1–12. https://doi.org/10.1186/s12870-020-02479-0
  • Jeong, S., Goto-Yamamoto, N., Kobayashi, S., & Esaka, M. (2004). Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science, 167(2), 247. https://doi.org/10.1016/j.plantsci.2004.03.021
  • Katam, R., Shokri, S., Murthy, N., Singh, S. K., Suravajhala, P., Khan, M. N., Bahmani, M., Sakata, K., & Reddy, K. R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean[j/OL]. Plos One, 15(6), 1–29. https://doi.org/10.1371/journal.pone.0233905
  • Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K., & Fernie, A. R. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. The Plant Journal, 67(2), 354–369. https://doi.org/10.1111/j.1365-313X.2011.04599.x
  • Lettuce, P., Oa, S., Sawada, Y., Mitsuhashi, W., Tatematsu, K., Kushiro, T., Koshiba, T., Kamiya, Y., Inoue, Y., Nambara, E., & Toyomasu, T. (2008). Phytochrome- and Gibberellin-mediated regulation of abscisic acid metabolism during germination of. Plant Physiology, 146(3), 1386–1396. https://doi.org/10.1104/pp.107.115162
  • Li, C., Zhang, B., Chen, B., Ji, L., & Yu, H. (2018). Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1mediates carbon partitioning in Arabidopsis seeds. Nature Communications, 9(1), 571. https://doi.org/10.1038/s41467-018-03013-5
  • Li, X. R., Wang, L., & Ruan, Y. L. (2010). Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. Journal of Experimental Botany, 61(1), 287–295. https://doi.org/10.1093/jxb/erp299
  • Lian, J., Lu, X., Yin, N., Ma, L., Lu, J., Liu, X., Li, J., Lu, J., Lei, B., Wang, R., & Chai, Y. (2017). Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Science, 254, 32–47. https://doi.org/10.1016/j.plantsci.2016.10.012
  • Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., & Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. The New Phytologist, 179(4), 1004. https://doi.org/10.1111/j.1469-8137.2008.02511.x
  • Ma, Y., Balamurugan, S., Yuan, W., Yang, F., Tang, C., Hu, H., Zhang, H., Shu, X., Li, M., Huang, S., Li, H., & Wu, L. (2018). Quercetin potentiates the concurrent hyper-accumulation of cellular biomass and lipids in Chlorella vulgaris. Bioresource Technology, 269, 434–442. https://doi.org/10.1016/j.biortech.2018.07.151
  • Mcglew, K., Shaw, V., Zhang, M., Kim, R. J., Yang, W., Shorrosh, B., Suh, M. C., & Ohlrogge, J. (2015). An annotated database of Arabidopsis mutants of acyl lipid metabolism. Plant cell reports, 34(4), 519–532. https://doi.org/10.1007/s00299-014-1710-8
  • Rolletschek, H., Borisjuk, L., Koschorreck, M., Wobus U, & Weber H (2002). Legume embryos develop in a hypoxic environment. Journal of Experimental Botany, 53(371), 1099–1107. https://doi.org/10.1093/jexbot/53.371.1099
  • Ruuska, S. A., Schwender, J., & Ohlrogge, J. B. (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiology, 136(1), 2700–2709. https://doi.org/10.1104/pp.104.047977
  • Schroda, M., Hemme, D., & Mühlhaus, T. (2015). The Chlamydomonas heat stress response. The Plant Journal, 82(3), 466–480. https://doi.org/10.1111/tpj.12816
  • Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2009). Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. Using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering, 14(5), 612–618. https://doi.org/10.1007/s12257-008-0316-9
  • Shockey, J., Regmi, A., Cotton, K., Adhikari, N., Browse, J., & Bates, P. D. (2016). Identification of arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis1[open]. Plant Physiology, 170(1), 163–179. https://doi.org/10.1104/pp.15.01563
  • Teixeira, M. C., Coelho, N., Olsson, M. E., Brodelius, P. E., Carvalho, I. S., & Brodelius, M. (2009). Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnology Letters, 31(7), 1089–1101. https://doi.org/10.1007/s10529-009-9956-x
  • Wang, R. (2021). China’s grain and oil production and marketing in 2020. China Oils and Fats, 46(08), 1–5.
  • Wang, Y., Zhang, X., Huang, G., Feng, F., Liu, X., Guo, R., Gu, F., Zhong, X., & Mei, X. (2020). Dynamic changes in membrane lipid composition of leaves of winter wheat seedlings in response to PEG-induced water stress. BMC Plant Biology, 20(1), 84. https://doi.org/10.1186/s12870-020-2257-1
  • Wu, J., Fan, X., Huang, X., Li, G., Guan, J., Tang, X., Qiu, M., Yang, S., & LU, S. (2021). Effect of different drying treatments on the quality of camellia oleifera seed oil. South African Journal of Chemical Engineering, 35(October 2020), 8–13. https://doi.org/10.1016/j.sajce.2020.10.003
  • Xiao, J., Gu, C., He, S., Zhu, D., Huang, Y., & Zhou, Q. (2021). Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Research International, 141(prepublish), 110–128. https://doi.org/10.1016/j.foodres.2021.110128
  • Xu, Z., Li, J., Guo, X., Jin, S., & Zhang, X. (2016). Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep33342
  • Yan, A., & Chen, Z. (2020). The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. The Botanical Review, 86(1), 39–75. https://doi.org/10.1007/s12229-020-09220-4
  • Zhang, X., Shen, L., F, L. I., Meng, D., & Sheng, J. (2013). Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit. Postharvest Biology and Technology, 79, 1–8. https://doi.org/10.1016/j.postharvbio.2012.12.019