792
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comparison of efficiency between liquefied petroleum gas (LPG) and electric hot air dryer: case study of dried pork slice

, ORCID Icon, &
Pages 181-188 | Received 11 Aug 2022, Accepted 25 Jan 2023, Published online: 16 Feb 2023

References

  • Achariyaviriya, S., Achariyaviriya, A., & Chunkaew, P. (2014). Evaluation of technology transfer to rural communities for drying using LPG and solar energy cabinet dryer. Journal of Agricultural Technology, 10(5), 1139–1150.
  • Aksoy, A., Karasu, S., Akcicek, A., & Kayacan, S. (2019). Effects of different drying methods on drying kinetics, microstructure, colour, and the rehydration ratio of minced meat. Foods, 8(6), 1–14. https://doi.org/10.3390/foods8060216
  • AOAC. (2016). Official methods of analysis of AOAC International (20th ed.).
  • Aregbesola, O. A., Ogunsina, B. S., Sofolahan, A. E., & Chime, N. N. (2015). Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal, 33(1), 83–89. https://doi.org/10.1016/j.nifoj.2015.04.012
  • Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91, 76–87. https://doi.org/10.1016/j.indcrop.2016.06.035
  • Çakmak, H., Kumcuoğlu, S., & Tavman, S. (2014). Mathematical modelling and thin layer drying of chicken meat enriched baguette bread slices. Gıda, 39(3), 131–138. https://doi.org/10.5505/gida.65265
  • Campidelli, M., Carneiro, J. D. D., Souza, E. C., Magalhães, M., Konig, I., Braga, M., Orlando, T., Simão Domingos, S., Lima, L., & Vilas Boas, E. V. B. (2019). Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds (Dipteryx alata Vog.) impact of the drying process on Baru Almonds. Journal of Culinary Science & Technology, 18(3), 231–243. https://doi.org/10.1080/15428052.2019.1573710
  • Charoenvai, S. C., Yingyuen, W., Jewyee, A., Rattanadecho, P., & Vongpradubchai, S. (2013). Analysis of Energy consumption in a drying process of particleboard using a combined multi-feed microwave-convective air and continuous belt system (CMCB). Science & Technology Asia, 18(3), 1–15.
  • Dębowski, M., Bukowski, P., Kobel, P., Bieniek, J., Romański, L., & Knutel, B. (2021). Comparison of energy consumption of cereal grain dryer powered by lpg and hard coal in polish conditions. Energies, 14(14), 4340. https://doi.org/10.3390/en14144340
  • Doymaz, I., Kipcak, A. S., & Piskin, S. (2015). Characteristics of thin-layer infrared drying of green bean. Czech Journal of Food Sciences, 33(1), 83–90. https://doi.org/10.17221/423/2014-CJFS
  • Hamdani, R. T. A., & Muhammad, Z. (2018). Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering, 12, 489–496. https://doi.org/10.1016/j.csite.2018.06.008
  • Hebbar, K. B., Padmanabhan, S., Ramesh, S. V., Keshav-Bhat, K., Shameena-Beegum, P. P., Pandiselvam, R., Manikantan, M. R., & Mathew, A. C. (2021). Moisture content and water activity of arecanut samples: A need to revisit storage guidelines. Journal of Plantation Crops, 49(2), 136–141. https://doi.org/10.25081/jpc.2021.v49.i2.7260
  • Javeed, A., & Omre, P. K. (2017). Mathematical modeling evaluation for convective hot air drying of poultry meat. International Journal of Agricultural Engineering, 10(1), 168–178.
  • Kaveh, M., Karami, H., & Jahanbakhshi, A. (2020). Investigation of mass transfer, thermodynamics, and greenhouse gases properties in pennyroyal drying. Journal of Food Process Engineering, 43(8), 1–15. https://doi.org/10.1111/jfpe.13446
  • Kondjoyan, A., Kohler, A., Realini, C. E., Portanguen, S., Kowalski, R., Clerjon, S., Gatellier, P., Chevolleau, S., Bonny, J. M., & Debrauwer, L. (2014). Towards models for the prediction of beef meat quality during cooking. Meat Science, 97(3), 323–331. https://doi.org/10.1016/j.meatsci.2013.07.032
  • Kosasih, E. A., Zikri, A., & Dzaky, M. I. (2020). Effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava. Case Studies in Thermal Engineering, 19, 1–9. https://doi.org/10.1016/j.csite.2020.100633
  • Kucerova, I., Hubackova, A., Rohlik, B. A., & Banout, J. (2015). Mathematical modelling of thin-layer solar drying of Eland (Taurotragus oryx) Jerky. International Journal of Food Engineering, 11(2), 229–242. https://doi.org/10.1515/ijfe-2014-0227
  • Lakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2019). Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Solar Energy, 188, 507–518. https://doi.org/10.1016/j.solener.2019.06.009
  • Lawrence, A., Thollander, P., Andrei, M., & Karlsson, M. (2019). Specific energy consumption/use (SEC) in energy management for improving energy efficiency in industry: Meaning, usage and differences. Energies, 12(2), 1–22. https://doi.org/10.3390/en12020247
  • Lopez, K. P., Schilling, M. W., & Corzo, A. (2011). Broiler genetic strain and sex effects on meat characteristics. Poultry Science, 90(5), 1105–1111. https://doi.org/10.3382/ps.2010-01154
  • Muga, F. C., Workneh, T. S., & Marenya, M. O. (2020). Modelling the thin-layer drying of beef biltong processed using hot air drying. Journal of Biosystems Engineering, 45(4), 362–373. https://doi.org/10.1007/s42853-020-00076-5
  • Murali, S., Amulya, P. R., Alfiya, P. V., Delfiya, D. A., & Samuel, M. P. (2020). Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps. Renewable Energy, 147, 2417–2428. https://doi.org/10.1016/j.renene.2019.10.002
  • Nazmi, I., Gokcen, I., & Onur, T. (2018). Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. CyTa - Journal of Food, 16(1), 213–221. https://doi.org/10.1080/19476337.2017.1381174
  • Ndukwu, M. C. (2009, April). Effect of drying temperature and drying air velocity on the drying rate and drying constant of cocoa bean. Agricultural Engineering International: CIGR e-Journal, xi(1091), 1.
  • Ramarao, K. D. R., Razali, Z., & Somasundram, C. (2021). Mathematical models to describe the drying process of Moringa oleifera leaves in a convective-air dryer. Czech Journal of Food Sciences, 39(6), 444–451. https://doi.org/10.17221/257/2020-CJFS
  • Shi, S., Feng, J., An, G., Kong, B., Wang, H., Pan, N., & Xia, X. (2021). Dynamics of heat transfer and moisture in beef jerky during hot air drying. Meat Science, 182, 108638. https://doi.org/10.1016/j.meatsci.2021.108638
  • Younis, M., Abdelkarim, D., & El Abdein, A. Z. (2018). Kinetics and mathematical modelling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25(2), 332–338. https://doi.org/10.1016/j.sjbs.2017.06.011
  • Zhang, Q. A., Song, Y., Wang, X., Zhao, W. Q., & Fan, X. H. (2016). Mathematical modeling of debittered apricot (Prunus armeniaca L.) kernels during thin-layer drying. CyTa - Journal of Food, 14(4), 509–517. https://doi.org/10.1080/19476337.2015.1136843