1,433
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of concentration by block freezing and vacuum evaporation on the physicochemical properties and digestibility of whey

, &
Pages 313-320 | Received 26 Oct 2022, Accepted 24 Mar 2023, Published online: 17 Apr 2023

References

  • Aider, M., De Halleux, D., & Akbache, A. (2007). Whey cryoconcentration and impact on its composition. Journal of Food Engineering, 82(1), 92–102. https://doi.org/10.1016/j.jfoodeng.2007.01.025
  • Aider, M., De Halleux, D., & Melnikova, I. (2008). Gravitational and microwave-assisted thawing during milk whey cryoconcentration. Journal of Food Engineering, 88(3), 373–380. https://doi.org/10.1016/j.jfoodeng.2008.02.024
  • Almeida, C. C., Monteiro, M. L. G., da Costa-Lima, B. R. C., Alvares, T. S., & Conte-Junior, C. A. (2015). In vitro digestibility of commercial whey protein supplements. LWT-Food Science and Technology, 61(1), 7–11. https://doi.org/10.1016/j.lwt.2014.11.038
  • Association of Official Analytical Chemist. (2012). Association of official analytical chemist AOAC. Official methods of analysis (19th ed.). AOAC International.
  • Ayunta, C. A., Quinzio, C. M., Puppo, M. C., & Iturriaga, L. B. (2019). Physicochemical properties of caprine and commercial bovine whey protein concentrate. Journal of Food Measurement and Characterization, 13(4), 2729–2739. https://doi.org/10.1007/s11694-019-00194-5
  • Balde, A., & Aïder, M. (2017). Effect of cryoconcentration, reverse osmosis and vacuum evaporation as concentration step of skim milk prior to drying on the powder properties. Powder Technology, 319, 463–471. https://doi.org/10.1016/j.powtec.2017.07.016
  • Balde, A., & Aider, M. (2019). Impact of sterilization and storage on the properties of concentrated skim milk by cryoconcentration in comparison with vacuum evaporation and reverse osmosis concentration. Journal of Food Process Engineering, 42(5), e13130. https://doi.org/10.1111/jfpe.13130
  • Belén, F., Hernández, E., Auleda, J. M., & Raventós, M. (2015). Una alternativa a la gestión de aguas residuales de queserías: crioconcentracion en capa.
  • Belén, F., Hernández Yáñez, E., & Raventós Santamaria, M. (2018). Management of cheese whey by film freeze concentration. Environmental Engineering and Management Journal, 17(6), 1373–1383. https://doi.org/10.30638/eemj.2018.136
  • Bhat, Z. F., Morton, J. D., Bekhit, A. E. D. A., Kumar, S., & Bhat, H. F. (2021). Processing technologies for improved digestibility of milk proteins. Trends in Food Science & Technology, 118, 1–16. https://doi.org/10.1016/j.tifs.2021.09.017
  • Blanquet, S., Garrait, G., Beyssac, E., Perrier, C., Denis, S., Hébrard, G., & Alric, M. (2005). Effects of cryoprotectants on the viability and activity of freeze-dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system. European Journal of Pharmaceutics and Biopharmaceutics, 61(1–2), 32–39. https://doi.org/10.1016/j.ejpb.2005.03.009
  • Casas-Forero, N., Orellana-Palma, P., & Petzold, G. (2020). Influence of block freeze concentration and evaporation on physicochemical properties, bioactive compounds and antioxidant activity in blueberry juice. Food Science and Technology, 40(suppl 2), 387–394. https://doi.org/10.1590/fst.29819
  • de Vries, A., Wesseling, A., van der Linden, E., & Scholten, E. (2017). Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science, 486, 75–83. https://doi.org/10.1016/j.jcis.2016.09.043
  • Ha, E., & Zemel, M. B. (2003). Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people. The Journal of Nutritional Biochemistry, 14(5), 251–258. https://doi.org/10.1016/S0955-2863(03)00030-5
  • Hernández, E., Raventós, M., Auleda, J. M., & Ibarz, A. (2010). Freeze concentration of must in a pilot plant falling film cryoconcentrator. Innovative Food Science & Emerging Technologies, 11(1), 130–136. https://doi.org/10.1016/j.ifset.2009.08.014
  • Kaur, R., Panwar, D., & Y Panesar, P. S. (2020). Enfoque biotecnológico para la valorización del suero de leche para productos de valor agregado. In M. R. Kosseva & C. Webb (Eds.), Food industry wastes: Assessment and recuperation of commodities (2nd ed., pp. 275–302). Academic Press, Elsevier. ISBN: 978-0128171219.
  • Korotkiy, I. A., Korotkaya, E. V., Neverov, E. N., Plotnikov, I. B., & Efremov, D. A. (2021, September). Separatory freezing and cryoconcentration of milk and whey. IOP Conference Series: Earth and Environmental Science, 852(1), 012052. IOP Publishing. https://doi.org/10.1088/1755-1315/852/1/012052/meta
  • Lacroix, M., Bon, C., Bos, C., Léonil, J., Benamouzig, R., Luengo, C., Fauquant, J., Tomé, D., & Gaudichon, C. (2008). Ultra high temperature treatment, but not pasteurization, affects the postprandial kinetics of milk proteins in humans. The Journal of Nutrition, 138(12), 2342–2347. https://doi.org/10.3945/jn.108.096990
  • Levi, C. S., & Lesmes, U. (2014). Bi-compartmental elderly or adult dynamic digestion models applied to interrogate protein digestibility. Food & Function, 5(10), 2402–2409. https://doi.org/10.1039/c4fo00478g
  • Master, P. B. Z., & Macedo, R. C. O. (2021). Effects of dietary supplementation in sport and exercise: A review of evidence on milk proteins and amino acids. Critical Reviews in Food Science and Nutrition, 61(7), 1225–1239. https://doi.org/10.1080/10408398.2020.1756216
  • Nielsen, P. M., Petersen, D., & Dambmann, C. J. J. O. F. S. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  • Panesar, P. S., y Kennedy, J. F. (2012). Enfoques biotecnológicos para la adición de valor del suero. Reseñas críticas en biotecnología, 32(4), 327–348.
  • Parra Huertas, R. A. (2009). Lactosuero: importancia en la industria de alimentos. Revista facultad nacional de agronomía Medellín, 62(1), 4967–4982.
  • Quinteros, G. J. (2020). Estudios de concentración de lactosuero mediante crioconentración progresiva agitada [ Master’s thesis, Universitat Politècnica de Catalunya]. http://hdl.handle.net/2117/327075
  • Raventós, M., Hernández, E., Auleda, J., & Ibarz, A. (2007). Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator. Journal of Food Engineering, 79(2), 577–585. https://doi.org/10.1016/j.jfoodeng.2006.02.017
  • Rohini, A., Agrawal, N., Kumar, H., & Kumar, V. (2018). Emerging role of branched chain amino acids in metabolic disorders: A mechanistic review. PharmaNutrition, 6(2), 47–54. https://doi.org/10.1016/j.phanu.2018.01.003
  • Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2011). Freeze concentration of whey in a falling-film based pilot plant: Process and characterization. Journal of Food Engineering, 103(2), 147–155. https://doi.org/10.1016/j.jfoodeng.2010.10.009
  • Souza, R. R., Gimenes, M. L., Costa, S. C., & Müller, C. M. (2008). Eliminación de grasas del suero de queso para obtener proteínas y lactosa. Información tecnológica, 19(2), 41–50. https://doi.org/10.4067/S0718-07642008000200006
  • Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., & Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00076.2009
  • Yañez-Ñeco, C. V., Cervantes, F. V., Amaya Delgado, L., Ballesteros, A. O., Plou, F. J., & Arrizon, J. (2021). Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 49, 14–21. https://doi.org/10.1016/j.ejbt.2020.10.004
  • Yasmin, A., Butt, M. S., Sameen, A., & Shahid, M. (2013). Physicochemical and amino acid profiling of cheese whey. Pakistan Journal of Nutrition, 12(5), 455. https://doi.org/10.11/420.4007&rep=rep1=&type=pdf
  • Zúñiga, R. N., & Aguilera, J. M. (2009). Structure–fracture relationships in gas-filled gelatin gels. Food Hydrocolloids, 23(5), 1351–1357. https://doi.org/10.1016/j.foodhyd.2008.11.012