810
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of different glutenin types on the physicochemical properties and in vitro digestion of cassava starch

, , , & ORCID Icon
Pages 394-403 | Received 03 Feb 2023, Accepted 27 Apr 2023, Published online: 10 May 2023

References

  • Al-Rabadi, G. J. S., Gilbert, R. G., & Gidley, M. J. (2009). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50(2), 198–204. https://doi.org/10.1016/j.jcs.2009.05.001
  • Chen, B., Wang, Y. R., Fan, J. L., Yang, Q., & Chen, H. Q. (2019). Effect of glutenin and gliadin modified by protein-glutaminase on retrogradation properties and digestibility of potato starch. Food Chemistry, 301, 125226. https://doi.org/10.1016/j.foodchem.2019.125226
  • Chen, X., He, X., Fu, X., & Huang, Q. (2015). Invitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. Journal of Cereal Science, 63, 109–115. https://doi.org/10.1016/j.jcs.2015.03.003
  • Chengdeng, C., Xiaoxi, L., Yiping, Z., Ling, C., & Lin, Z. (2017). Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food & Function, 8(2), 720–730. https://doi.org/10.1039/c6fo01468b
  • Chi, C., Li, X., Zhang, Y., Chen, L., & Li, L. (2018). Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocolloids, 84, 473–480. https://doi.org/10.1016/j.foodhyd.2018.06.040
  • Chung, H. J., Shin, D. H., & Lim, S. T. (2008). In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International, 41(6), 579–585. https://doi.org/10.1016/j.foodres.2008.04.006
  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(Suppl 2), S33–50. PMID: 1330528
  • Ezeogu, L. I., Duodu, K. G., & Taylor, J. (2005). Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. Journal of Cereal Science, 42(1), 33–44. https://doi.org/10.1016/j.jcs.2005.02.002
  • García, V., Rovira, S., Teruel, R., Boutoial, K., Rodríguez, J., Roa, I., & López, M. B. (2012). Effect of vegetable coagulant, microbial coagulant and calf rennet on physicochemical, proteolysis, sensory and texture profiles of fresh goats cheese. Dairy Science & Technology, 92(6), 691–707. https://doi.org/10.1007/s13594-012-0086-1
  • Jia, M., Yu, Q., Chen, J., He, Z., Chen, Y., Xie, J., Nie, S., & Xie, M. (2020). Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids, 99. 105349. https://doi.org/10.1016/j.foodhyd.2019.105349
  • KačUráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43(2), 195–203. https://doi.org/10.1016/S0144-8617(00)00151-X
  • Kun, L., Yanyan, C., Chi, L., & Chen, X. (2018). Modulation of cassava starch digestibility and multi-scale structure by controlling the growth period. International Journal of Biological Macromolecules, 120, 346–353. https://doi.org/10.1016/j.ijbiomac.2018.07.184
  • Lee, S., Lee, J. H., & Chung, H. J. (2017). Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing. Carbohydrate Polymers, 169, 33–40. https://doi.org/10.1016/j.carbpol.2017.03.091
  • Lehmann, U., & Robin, F. (2007). Slowly digestible starch - Its structure and health implications: A review. Trends in Food Science & Technology, 18(7), 346–355. https://doi.org/10.1016/j.tifs.2007.02.009
  • Liao, L., Liu, T.-X., Zhao, M.-M., Cui, C., Yuan, B.-E., Tang, S., & Yang, F. (2010). Functional, nutritional and conformational changes from deamidation of wheat gluten with succinic acid and citric acid. Food Chemistry, 123(1), 123–130. https://doi.org/10.1016/j.foodchem.2010.04.017
  • Lin, L., Yu, X., Gao, Y., Mei, L., Zhu, Z., & Du, X. (2022). Physicochemical properties and in vitro starch digestibility of wheat starch/rice protein hydrolysate complexes. Food Hydrocolloids, 125, 107348. https://doi.org/10.1016/j.foodhyd.2021.107348
  • Liu, F. Y., Yang, Z., Guo, X. N., Xing, J. J., & Zhu, K. X. (2021). Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Research International, 142, 110199. https://doi.org/10.1016/j.foodres.2021.110199
  • Liya, L., & Xiao, J. (2017). Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates. Carbohydrate Polymers, 175, 311–319. https://doi.org/10.1016/J.CARBPOL.2017.07.070
  • Long, G., Ji, Y., Pan, H., Sun, Z., Li, Y., & Qin, G. (2015). Characterization of thermal denaturation structure and morphology of soy glycinin by FTIR and SEM. International Journal of Food Properties, 18(4), 763–774. https://doi.org/10.1080/10942912.2014.908206
  • Lopez-Baron, N., Gu, Y., Vasanthan, T., & Hoover, R. (2017). Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocolloids, 69, 19–27. https://doi.org/10.1016/j.foodhyd.2017.01.015
  • Lopez-Baron, N., Sagnelli, D., Blennow, A., Holse, M., Gao, J., Saaby, L., Mullertz, A., Jespersen, B., & Vasanthan, T. (2018). Hydrolysed pea proteins mitigate in vitro wheat starch digiestibility. Food Hydrocolloids, 79, 117–126. https://doi.org/10.1016/j.foodhyd.2017.12.009
  • Lu, X., Chang, R., Lu, H., Ma, R., & Tian, Y. (2021). Effect of amino acids composing rice protein on rice starch digestibility. LWT-Food Science and Technology, 146, 111417. https://doi.org/10.1016/j.lwt.2021.111417
  • Lu, X., Ma, R., Qiu, H., Sun, C., & Tian, Y. (2021). Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. International Journal of Biological Macromolecules, 193, 311–318. https://doi.org/10.1016/j.ijbiomac.2021.10.140
  • Lu, Z. H., Donner, E., Yada, R. Y., & Liu, Q. (2016). Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydrate Polymers, 154, 214–222. https://doi.org/10.1016/j.carbpol.2016.08.055
  • Niu, F., Li, M., Fan, J., Kou, M., & Pan, W. (2019). Structural characteristics and digestibility of bovine skin protein and corn starch extruded blend complexes. Journal of Food Science and Technology -Mysore-, 57(9), 1–8. https://doi.org/10.1007/s13197-019-04137-2
  • Osella, C. A., Sánchez, H., Carrara, C. R., Torre, M., & Buera, M. P. (2010). Water redistribution and structural changes of starch during storage of a gluten‐free bread. Starch - Stã¤rke, 57(5), 208–216. https://doi.org/10.1002/star.200400330
  • Qiu, C., Sun, W., Cui, C., & Zhao, M. (2013). Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten. Food Chemistry, 141(3), 2772–2778. https://doi.org/10.1016/j.foodchem.2013.05.072
  • Renbing, Q., Jinglin, Y., Yufang, L., Les, C., & Shuo, W. (2019). Structural changes of starch-lipid complexes during postprocessing and their effect on in vitro enzymatic digestibility. Journal of Agricultural & Food Chemistry, 67(5), 1530–1536. https://doi.org/10.1021/acs.jafc.8b06371
  • Tavares, G. M., Croguennec, T., Hamon, P., Carvalho, A. F., & Bouhallab, S. (2017). How the presence of a small molecule affects the complex coacervation between lactoferrin and β-lactoglobulin. International Journal of Biological Macromolecules, 102, 192–199. https://doi.org/10.1016/j.ijbiomac.2017.04.007
  • Wang, L., Xiao, M., Dai, S., Song, J., Ni, X., Fang, Y., Corke, H., & Jiang, F. (2014). Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydrate Polymers, 101, 136–145. https://doi.org/10.1016/j.carbpol.2013.09.028
  • Wang, N., Wu, L., Zhang, F., Kan, J., & Zheng, J. (2022). Modifying the rheological properties, in vitro digestion, and structure of rice starch by extrusion assisted addition with bamboo shoot dietary fiber. Food Chemistry, 375, 131900. https://doi.org/10.1016/j.foodchem.2021.131900
  • Wang, S., Zhang, X., Wang, S., & Copeland, L. (2016). Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Scientific Reports, 6(1), 28271. https://doi.org/10.1038/srep28271
  • Wei, Z., Zheng, Y., Hao, J., Deng, Y., Zhang, Y., Tang, X., Liu, G., Li, P., Zhong, L., Zhao, Z., Wang, J., Liao, N., Wang, Z., & Zhang, M. (2022). Effects of soybean oil and whey protein complexation by temperature treatments on the structural, physicochemical and digestive characteristics of autoclaved rice. Food Structure, 31, 100252. https://doi.org/10.1016/j.foostr.2022.100252
  • Xiao, J., Niu, L., Wu, L., Li, D., & He, H. (2019). Preparation of an in vitro low-digestible rice starch by addition of grass carp protein hydrolysates and its possible mechanisms. Starch - Stärke, 71(1–2), 1800159. https://doi.org/10.1002/star.201800159
  • Xu, C. A., Jl, A., Zl, B., Jie, Z. A., Lin, L. A., & Qiang, W. C. (2020). Structural and physicochemical/digestion characteristics of potato starch-amino acid complexes prepared under hydrothermal conditions. International Journal of Biological Macromolecules, 145, 1091–1098. https://doi.org/10.1016/j.ijbiomac.2019.09.202
  • Xu, H., Zhou, J., Yu, J., Wang, S., & Wang, S. (2021). Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocolloids, 113, 106507. https://doi.org/10.1016/j.foodhyd.2020.106507
  • Yu, W., Zou, W., Dhital, S., Peng, W., & Gilbert, R. G. (2018). The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chemistry, 241, 493–501. https://doi.org/10.1016/j.foodchem.2017.09.021
  • Zhang, G., & Hamaker, B. R. (2009). Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition, 49(10), 852–867. https://doi.org/10.1080/10408390903372466
  • Zheng, M., Chen, C., Yu, J., Copeland, L., & Wang, S. (2018). Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes. Journal of Agricultural & Food Chemistry, 66(8), 1872–1880. https://doi.org/10.1021/acs.jafc.7b04779
  • Zou, W., Schulz, B. L., Tan, X., Sissons, M., Warren, F. J., Gidley, M. J., & Gilbert, R. G. (2018). The role of thermostable proteinaceous α-amylase inhibitors in slowing starch digestion in pasta. Food Hydrocolloids, 90, 241–247. https://doi.org/10.1016/j.foodhyd.2018.12.023