884
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of Pickering emulsion with microcrystalline cellulose in vitamin C double emulsion process with spray drying technology

, , , , &
Pages 542-553 | Received 28 Feb 2023, Accepted 21 Aug 2023, Published online: 11 Sep 2023

References

  • Ahsan, H. M., Pei, Y., Luo, X., Wang, Y., Li, Y., Li, B., & Liu, S. (2020). Novel stable pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocolloids, 108(100), 106044. https://doi.org/10.1016/j.foodhyd.2020.106044
  • Ahsan, H. M., Zhang, X., Liu, Y., Wang, Y., Li, Y., Li, B., Wang, J., & Liu, S. (2020). Stable cellular foams and oil powders derived from methylated microcrystalline cellulose stabilized pickering emulsions. Food Hydrocolloids, 104(January), 105742. https://doi.org/10.1016/j.foodhyd.2020.105742
  • Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
  • Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Introduction to spray drying. Spray Drying Techniques for Food Ingredient Encapsulation, 1–36. https://doi.org/10.1002/9781118863985.ch1
  • Azubuike, C. P., & Okhamafe, A. O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Journal of Recycling of Organic Waste in Agriculture, 1(9), 1–7. https://doi.org/10.1186/2251-7715-1-9
  • Bai, L., Greca, L. G., Xiang, W., Lehtonen, J., Huan, S., Nugroho, R. W. N., Tardy, B. L., & Rojas, O. J. (2019). Adsorption and assembly of cellulosic and lignin Colloids at oil/waterinterfaces. Langmuir, 35(3), 571–588. https://doi.org/10.1021/acs.langmuir.8b01288
  • Bai, L., Huan, S., Xiang, W., & Rojas, O. J. (2018). Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization. Green Chemistry, 20(7), 1571–1582. https://doi.org/10.1039/c8gc00134k
  • Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders physical properties, processing, and functionality. https://doi.org/10.1007/0-387-27613-0
  • Benichou, A., Aserin, A., & Garti, N. (2004). Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science, 108–109, 29–41. https://doi.org/10.1016/j.cis.2003.10.013
  • Berendsen, R., Güell, M., & Ferrando, C. (2015). Spray dried double emulsions containing procyanidin-rich extracts produced by premix membrane emulsification: Effect of interfacial composition. Food Chem, 178, 251–258. https://doi.org/10.1016/j.foodchem.2015.01.093
  • Campelo, P. H., Junqueira, L. A., Resende, J. V. D., Zacarias, R. D., Fernandes, R. V. D. B., Botrel, D. A., & Borges, S. V. (2017). Stability of lime essential oil emulsion prepared using biopolymers and ultrasound treatment. International Journal of Food Properties, 20(March), S564–S579. https://doi.org/10.1080/10942912.2017.1303707
  • Clayton, K. N., Salameh, J. W., Wereley, S. T., & Kinzer-Ursem, T. L. (2016). Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 10(5). https://doi.org/10.1063/1.4962992
  • Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379. https://doi.org/10.1016/j.foodres.2013.03.028
  • Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers (Basel), 11(10). https://doi.org/10.3390/polym11101570.
  • Das, S., & Chaudhury, A. (2011). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmScitech, 12(1), 62–76. https://doi.org/10.1208/s12249-010-9563-0
  • Dhar, N., Akhlaghi, S. P., & Tam, K. C. (2012). Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydrate Polymers, 87(1), 101–109. https://doi.org/10.1016/j.carbpol.2011.07.022
  • Do, H. T. T., & Nguyen, H. V. H. (2018). Effects of spray-drying temperatures and ratios of gum arabic to microcrystalline cellulose on antioxidant and physical properties of mulberry juice powder. Beverages, 4(4), 101. https://doi.org/10.3390/beverages4040101
  • Fang, S., Zhao, X., Liu, Y., Liang, X., & Yang, Y. (2019). Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids, 93(May 2018), 102–110. https://doi.org/10.1016/j.foodhyd.2019.02.024
  • Floury, J., Desrumaux, A., & Lardières, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies, 1(2), 127–134. https://doi.org/10.1016/S1466-8564(00)00012-6
  • Ghorab, M. K., Toth, S. J., Simpson, G. J., Mauer, L. J., & Taylor, L. S. (2014). Water-solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures. Pharmaceutical Development and Technology, 19(2), 247–256. https://doi.org/10.3109/10837450.2013.775157
  • Grishkewich, N., Mohammed, N., Tang, J., & Tam, K. C. (2017). Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid & Interface Science, 29, 32–45. https://doi.org/10.1016/j.cocis.2017.01.005
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3
  • Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/cr900339w
  • Hino, T., Shimabayashi, S., Tanaka, M., Nakano, M., & Okochi, H. (2001). Improvement of encapsulation efficiency of water-in-oil-in-water emulsion with hypertonic inner aqueous phase. Journal of Microencapsulation, 18(1), 19–28. https://doi.org/10.1080/026520401750038575
  • Holmberg, K., Jönsson, B., Kronberg, B., & Lindman, B. (2004). Emulsions and emulsifiers (2nd ed.). John Wiley & Sons Ltd. https://doi.org/10.1002/0470856424.ch2
  • Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123–131. https://doi.org/10.1016/j.jiec.2018.06.022
  • Imeson, A. (2010). Food stabilisers, thickeners and gelling agents (1st ed.). Blackwell Publishing. https://doi.org/10.1002/9781444314724
  • Kanha, N., Regenstein, J. M., Surawang, S., Pitchakarn, P., & Laokuldilok, T. (2021). Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chemistry, 340(August 2020), 127950. https://doi.org/10.1016/j.foodchem.2020.127950
  • Kargar, M., Fayazmanesh, K., Alavi, M., Spyropoulos, F., & Norton, I. T. (2012). Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of Colloid and Interface Science, 366(1), 209–215. https://doi.org/10.1016/j.jcis.2011.09.073
  • Krawczyk, G. R., Venables, A., & Tuason, D. (2009). Microcrystalline cellulose, no. Mcc. Woodhead Publishing Limited. https://doi.org/10.1533/9781845695873.740
  • Lamba, H., Sathish, K., & Sabikhi, L. (2015). Double emulsions: Emerging delivery system for Plant Bioactives. Food and Bioprocess Technology, 8(4), 709–728. https://doi.org/10.1007/s11947-014-1468-6
  • Leister, N., & Karbstein, H. P. (2020). Evaluating the stability of double emulsions— A review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids and Interfaces, 4(1), 1–18. https://doi.org/10.3390/colloids4010008
  • McClements, D. J. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 219, 27–53. https://doi.org/10.1016/j.cis.2015.02.002
  • McClements, D. J. (2016). Food emulsions (3rd ed.). CRC Press: https://doi.org/10.1201/b18868
  • Mlalila, N., Swai, H., Kalombo, L., & Hilonga, A. (2014). Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix. Nanotechnology, Science and Applications, 4(7), 105–112. https://doi.org/10.2147/nsa.s72083
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(December 2003), 211–219. https://doi.org/10.1287/isre.6.2.144
  • Nanocomposix. (2020). Guidelines for zeta zeta potential analysis of Nanoparticles. NANOCOMPOSIX.COM. Retrieved April 24, 2022, from https://cdn.shopify.com/s/files/1/0257/8237/files/nanoComposix_Guidelines_for_Zeta_Potential_Analysis_of_Nanoparticles.pdf?13692.
  • Nasatto, P. L., Pignon, F., Silveira, J. L. M., Duarte, M. E. R., Noseda, M. D., & Rinaudo, M. (2015). Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers (Basel), 7(5), 777–803. https://doi.org/10.3390/polym7050777
  • Nurhadi, B., Sulaeman, M. Y., & Mahani. (2023). Antioxidant stability of vitamin C in double Pickering emulsion W/O/W with microcrystalline cellulose. International Journal of Food Properties, 26(1), 567–580. https://doi.org/10.1080/10942912.2023.2173228
  • Parhizkar, E., Rashedinia, M., Karimi, M., & Alipour, S. (2018). Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. Journal of Microencapsulation, 35(3), 301–311. https://doi.org/10.1080/02652048.2018.1477845
  • Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105, 1232–1240. https://doi.org/10.1016/j.ijbiomac.2017.07.160
  • Santos, M. G., Bozza, F. T., Thomazini, M., & Favaro-Trindade, C. S. (2015). Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, 171, 32–39. https://doi.org/10.1016/j.foodchem.2014.08.093
  • Sapei, L., Naqvi, M. A., & Rousseau, D. (2012). Stability and release properties of double emulsions for food applications. Food Hydrocolloids, 27(2), 316–323. https://doi.org/10.1016/j.foodhyd.2011.10.008
  • Schilder, W. H., Tanumihardja, E., Leferink, A. M., van den Berg, A., & Olthuis, W. (2020). Determining the antioxidant properties of various beverages using staircase voltammetry. Heliyon, 6(6), e04210. https://doi.org/10.1016/j.heliyon.2020.e04210
  • Schuh, V., Allard, K., Herrmann, K., Gibis, M., Kohlus, R., & Weiss, J. (2013). Impact of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) on functional characteristics of emulsified sausages. Meat Science, 93(2), 240–247. https://doi.org/10.1016/j.meatsci.2012.08.025
  • Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids, 77, 803–816. https://doi.org/10.1016/j.foodhyd.2017.11.024
  • Shokri, J., & Adibki, K. (2013). Application of cellulose and cellulose derivatives in Pharmaceutical Industries. Cellulose - Medical, Pharmaceutical and Electronic Applications. https://doi.org/10.5772/55178
  • Snoussi, A., Chouaibi, M., Bouzouita, N., & Hamdi, S. (2020). Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties. Journal of Molecular Liquids, 311, 113304. https://doi.org/10.1016/j.molliq.2020.113304
  • Spyropoulos, F., Duffus, L. J., Smith, P., & Norton, I. T. (2019). Impact of Pickering Intervention on the stability of W1/O/W2 double emulsions of relevance to foods. Langmuir, No CMCC, 35(47), 15137–15150. https://doi.org/10.1021/acs.langmuir.9b01995
  • Stamford, N. P. J. (2012). Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives. Journal of Cosmetic Dermatology, 11(4), 310–317. https://doi.org/10.1111/jocd.12006
  • Su, J., Flanagan, J., Hemar, Y., & Singh, H. (2006). Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocolloids, 20(2–3) SPEC. ISS, 261–268. https://doi.org/10.1016/j.foodhyd.2004.03.010.
  • Toledo, R. T. (2007). Fundamentals of food process engineering. (3rd ed.).
  • Toledo Hijo, A. A. C., Da Costa, J. M. G., Silva, E. K., Azevedo, V. M., Yoshida, M. I., & Borges, S. V. (2015). Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. Journal of Food Process Engineering, 38(1), 1–10. https://doi.org/10.1111/jfpe.12120
  • Vicente, J., Pereira, L. J. B., Bastos, L. P. H., de Carvalho, M. G., & Garcia-Rojas, E. E. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. https://doi.org/10.1016/j.ijbiomac.2018.08.041
  • Wang, F., Liu, N., Li, K., Ma, T., Ren, F., & Luo, J. (2019). Effects of enzyme-modified soybean beverage on the composition, yield, functionality and microstructure of Cheddar cheese-like products. Lwt, 116(August), 108498. https://doi.org/10.1016/j.lwt.2019.108498
  • Wei, Z., & Huang, Q. (2020). Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. International Journal of Food Science & Technology, 55(5), 1891–1899. https://doi.org/10.1111/ijfs.14340
  • Winuprasith, T., & Suphantharika, M. (2015). Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloids, 43, 690–699. https://doi.org/10.1016/j.foodhyd.2014.07.027
  • Xiao, J., Li, Y., & Huang, Q. (2016). Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Science Technology, 55, 48–60. https://doi.org/10.1016/j.tifs.2016.05.010
  • Xia, T., Xue, C., & Wei, Z. (2021). Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Science Technology, 107(November 2020), 1–15. https://doi.org/10.1016/j.tifs.2020.11.019
  • Xie, J., Luo, Y., Chen, Y., Liu, Y., Ma, Y., Zheng, Q., Yue, P., & Yang, M. (2019a). Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydrate Polymers, 213(November 2018), 128–137. https://doi.org/10.1016/j.carbpol.2019.02.064.
  • Xie, J., Luo, Y., Chen, Y., Liu, Y., Ma, Y., Zheng, Q., Yue, P., & Yang, M. (2019b). Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydrate Polymers, 213, 128–137. https://doi.org/10.1016/j.carbpol.2019.02.064
  • Xu, D., Yuan, F., Wang, X., Li, X., Hou, Z., & Gao, Y. (2011). The effect of whey protein isolate-dextran conjugates on the freeze-thaw stability of oil-in-water emulsion. Journal of Dispersion Science and Technology, 32(1), 77–83. https://doi.org/10.1080/01932690903546785
  • Xu, D., Zhang, J., Cao, Y., Wang, J., & Xiao, J. (2016). Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT - Food Science and Technology, 66, 590–597. https://doi.org/10.1016/j.lwt.2015.11.002
  • Yaginuma, Y., & Kijima, T. (2006). Effects of microcrystalline cellulose on suspension stability of cocoa beverage. Journal of Dispersion Science and Technology, 27(7), 941–948. https://doi.org/10.1080/01932690600766306
  • Yegya Raman, A. K., & Aichele, C. P. (2020). Influence of non-ionic surfactant addition on the stability and rheology of particle-stabilized emulsions. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 585, 124084. https://doi.org/10.1016/j.colsurfa.2019.124084
  • Yousefi, S., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F., & Zbicinski, I. (2015). Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Advanced Powder Technology, 26(2), 462–469. https://doi.org/10.1016/j.apt.2014.11.019
  • Zhang, W., Huang, Q., Yang, R., Zhao, W., & Hua, X. (2021). 2-O-D-glucopyranosyl-L-ascorbic acid: Properties, production, and potential application as a substitute for L-ascorbic acid. Journal of Functional Foods, 82, 104481. https://doi.org/10.1016/j.jff.2021.104481
  • Zhao, M., Huang, X., Zhang, H., Zhang, Y., Gänzle, M., Yang, N., Nishinari, K., & Fang, Y. (2020). Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocolloids, 105(July 2019), 105790. https://doi.org/10.1016/j.foodhyd.2020.105790